论文部分内容阅读
Banach压缩原理是最基础也是应用最广泛的定理之一.这篇文章在软集的基础上,对Banach压缩原理作了几种推广,定义了几种新的压缩条件,证明了与这几种压缩条件相对应的不动点定理.全文分为五章.第二章首先介绍了软集、软元的概念及其相关运算,还介绍了软度量及软完备度量空间的定义及其性质,然后介绍了软线性空间、软范数、软线性算子的概念及其相关性质,为后面论点的介绍做铺垫.第三章定义了软F压缩和软F弱压缩的概念,还定义了软(?)型F压缩和软(?)型F弱压缩等一些新的概念,讨论了在软完备度量空间中,这些新定义的压缩条件的一些性质,并且分别证明了这些不同的压缩条件所对应的不动点定理.第四章分为两个部分.第一部分研究并定义了最大范数∥·∥_m和赋予这种范数的软赋范线性空间的概念及相关性质,还在此基础上研究了软Banach空间的定义、性质和有关结论.第二部分是借助前面第一部分的定义,进一步定义了软一致凸Banach空间,还定义了软循环压缩映射和软三环压缩映射的概念,并且讨论了这些压缩的最优邻近点的存在问题.第五章作为对Meir-Keeler压缩映射的推广,在软集的意义下由软度量空间定义了软拟度量空间.还介绍了软三角(?)相容映射,软(?)相容Meir-Keeler压缩映射等新的概念,也定义了软(?)相容Meir-Keeler压缩映射的其他推广形式,进而讨论了这种压缩映射在软拟度量空间中的不动点结论.