电动汽车动态无线电能传输系统补偿与控制策略研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:xxakk3321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为改善能源供应结构,传统燃油汽车逐渐被绿色清洁的新能源电动汽车所取代。相较于传统的有线插拔充电方式,以非接触方式对行驶中的汽车进行能量供给的动态无线电能传输技术(Dynamic Wireless Power Transfer,DWPT)以其高安全性,可靠性,环境适应性受到广泛关注,该方案有效提高了电动汽车的续航能力。由于电动汽车DWPT系统充电对象及运行环境的动态变化,系统发射线圈及接收线圈间耦合状态的波动及负载阻值的改变难以避免,导致系统传输特性偏离预期,传输效率及传输能力下降。针对上述问题,本文就电动汽车DWPT系统补偿与控制策略进行探究。为了解决传统DWPT系统控制方案调节速度慢,动态响应差,调控范围小等问题,本文提出一种基于参数辨识的原边控制方案。针对基本补偿网络在DWPT系统中应用的局限性,本文就LCC-S补偿网络传输特性及配置条件进行探讨,在此基础上,提出基于可变电容的参数辨识策略。通过调整开关电容结构等效容值使系统在稳态运行模态及非稳态运行模态之间相互切换,推导系统在两种运行模态下电路阻抗方程并建立参数辨识模型,实现耦合系数与负载阻值的同时辨识。基于参数辨识结果,本文对原边侧闭环控制方案进行研究,通过对前级功率变换器的控制调整系统直流输入电压,使其在动态条件下仍能维持恒压输出。考虑由于安装环境及制造精度引起的电容参数漂移现象对系统谐振状态及参数辨识精度的影响,设计闭环开关电容切换控制系统,通过对接收回路输入阻抗角的闭环控制,实现两种运行模态下开关电容结构等效容值的精确切换。针对接收侧回路感应电压无法通过传感器直接测量的问题,引入基于辅助线圈及解耦线圈的谐振状态检测电路并通过实验验证了其可行性。基于上述理论分析与推导搭建小功率硬件实验平台,仿真及实验结果验证了在耦合系数及负载阻抗动态波动的条件下,系统仍能实现恒压输出控制,同时,在参数漂移状态下,验证了闭环开关电容切换策略的有效性。
其他文献
随着碳中和目标的提出,越来越多学者开始研究如何实现这一目标。在能源领域,可以通过碳捕集和低碳或无碳燃料实现这一目标。氨气作为一种不含碳元素的气体,可以作为燃料进行燃烧。理论上氨气完全燃烧产物只有水和氮气,是一种新颖的无碳燃料。相对于同样不含碳元素的氢气,氨气燃烧现象较为平缓,也方便储存;但是氨气实际燃烧存在许多问题。氨气燃烧不如烷烃燃料稳定,燃烧尾气中含有大量的燃料型NOx,这些因素都限制了氨气作
在早期由于电感储能效率和开关管器件频率低,电流源逆变器电感值选取的比较大并且整个系统效率低,电机驱动系统主要采用电压源。随着高温超导材料的发展,电感储能效率变高,尤其最近以来宽禁带半导体器件Si C、Ga N的高速发展,电感选取值下降,基于电流源逆变器的电机驱动系统成为了新的研究热点。首先,本文以前级为DC-DC变换器的电流源逆变器三相永磁同步电机控制系统作为研究对象,给出了所选拓扑结构的数学模型
太阳能是地球取之不尽、清洁环保的核心能源。在地面上利用太阳能发电,受到大气层的吸收和散射、云雨雾雪的衰减、季节和昼夜更替的影响,能量密度较低且不稳定。在地球同步轨道上,太阳光线不会被大气层减弱,也不受季节和昼夜变化的影响,99%的时间内可稳定接收太阳辐射,平均1.353k W/m~2,约为地面的6~15倍,是建设空间太阳能电站的理想位置。空间太阳能电站是当前国际太阳能领域的前沿科学方向,聚光器是其
全钒液流电池(vanadium redox flow battery,VRB)因长寿命和低成本等特点而受到越来越多的关注。目前,商业Nafion膜高昂的价格和高钒离子渗透率限制了全钒液流电池推广和应用。因此,低成本和高性能的钒电池用隔膜的开发非常有现实意义。金属有机骨架(MOF)是一类由含金属单元和有机连接基组装而成的二维无机纳米材料。在众多的MOF中,MOF-UiO-66及其衍生物因为合适的孔径
化石能源不可再生,电动汽车(Electric Vehicle,EV)的发展必将成为主流。电动汽车作为一类新型的可控负荷,大范围地接入智能电网后,使智能电网面临诸多的机遇与挑战。一方面,大量的电动汽车通过充电桩与电网连接时,会导致电力系统的阻尼与惯性的缺失;另一方面,电动汽车大部分时间处于停止状态,其车载电池中存储了巨大的能量,可以对其加以利用。本文基于虚拟同步机(Virtual Synchrono
由于倏逝波的隧穿作用,当物体间的距离小于热波长时,辐射换热会突破普朗克黑体定律的限制,得到几个数量级的增强,此时物体的辐射被称为近场辐射。随着微纳尺度制造技术的不断进步,近场辐射展示出了巨大的应用潜力,引起了研究者的广泛关注。当两个粒子间引入额外的物体,由于多体效应,粒子间的近场辐射换热会得到增强,并且物体的形状、尺度、材料特性等会对粒子间近场辐射换热产生影响。本文根据前人的研究,运用粒子周围物体
全球范围内的资源消耗和环境退化导致人们对可再生能源的开发和利用越来越感兴趣。海洋能中的波浪能被认为是最有前途的可再生能源之一,其取之不尽,清洁无污染。其中基于浮式平台的多浮子波能转换器(Wave Energy Converters)是波浪能利用的重要发展方向,目前研究WECs的采能、储能是大多数研究单位的重点,对于浮子与浮式平台的耦合及浮式平台的稳定性的研究相对较少。本文研究了某种同轴阵列式浮子-
随着广域时间测量技术和电力系统实时监控手段的发展,越来越多的强迫振荡被检测出来,威胁着电网的稳定运行。与“负阻尼”引发振荡不同的是,强迫振荡是由周期性扰动引起的系统共振,当扰动频率接近电网固有频率时,这些小的干扰被迅速的放大和扩散,无法利用电力系统稳定器对其进行抑制。目前强迫振荡抑制方法的研究,大多数将目标放到扰动源的定位和控制上,而缺少在宏观整体方面的有效抑制方法。为此,本文对电网强迫振荡的抑制
负极材料作为锂离子电池的重要组成部分是决定电池性能的关键因素。然而商业化的石墨负极材料理论容量(372 m Ah g-1)已经不再满足高储能的要求,因此研究新的高容量、可适应社会发展的锂离子电池负极材料是急需解决的问题。在金属氧化物中,Sn O2具有较高的理论比容量(782 m Ah g-1),作为负极材料在锂离子电池的研究中具有重要意义。但是其本身的导电性差以及体积膨胀严重等问题使得Sn O2高
在低温、大倍率、过充等特殊工况下锂离子电池析锂,会导致锂离子电池容量、内阻情况恶化,甚至会导致内短路引发热失控,带来安全事故。目前尚缺乏一种行之有效的商用锂离子电池析锂量化方法。本文基于锂离子电池的电化学阻抗谱(Electrochemical impedance spectroscopy,简称EIS),对商用电池的快速无损析锂量化测量进行研究。搭建锂离子电池EIS时域测量平台,针对特定电池设计实验