基于电流源逆变器的三相永磁同步电机控制系统研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:a327581460
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在早期由于电感储能效率和开关管器件频率低,电流源逆变器电感值选取的比较大并且整个系统效率低,电机驱动系统主要采用电压源。随着高温超导材料的发展,电感储能效率变高,尤其最近以来宽禁带半导体器件Si C、Ga N的高速发展,电感选取值下降,基于电流源逆变器的电机驱动系统成为了新的研究热点。首先,本文以前级为DC-DC变换器的电流源逆变器三相永磁同步电机控制系统作为研究对象,给出了所选拓扑结构的数学模型,并且基于输出侧有三相滤波电容,构建了三闭环控系统。考虑到基于dq轴坐标系下的数学模型,电机和电容方程有旋转代价耦合项,采用前馈解耦策略,同时利用工程上控制器的设计方法进行参数设计。其次,基于电流源逆变器调制策略的两个基本要求,给出功率开关管导通原则和空间电流矢量图。参考电压源的SVPWM调制策略,分析出电流源的电流矢量扇区判断、电流矢量作用时间、PWM开关管信号实现方法,为后续电机驱动系统奠定了基础。再次,针对电流源逆变器和Boost变换器拓扑结构类似性,依据电流源拓扑结构特殊性与类比Boost变换器两种方法分析了电流源的电压泵升特性。之后利用电压泵升特性,对DC-DC变换器与母线电感选取的关系进行了研究。并给了DC-DC变换器开关频率、电流源调制比与母线电流纹波关系的公式。并基于允许最大电流纹波,给出电感选取原则。最后,依据电流源的电压泵升特性,将电流源电机转速范围分成四个区域,恒转矩区、电压泵升区、变调制比区和弱磁区域。调节DC-DC变换器调制比实现恒转矩区和电压泵升区;改变电流源调制比实现变调制比区;基于电压源的电压负反馈弱磁方法,给出电流源的弱磁控制策略。
其他文献
随着陶瓷电介质电容器的广泛应用和迅猛发展,高储能密度材料紧需程度越来越高。NBT具有良好的铁电性,极化强度高,且易发生铁电相/弛豫相转变,ST是先兆性铁电体,室温下无铁电性,但ST可以与NBT以任意比例固溶,调节NBT的相变温度和相结构。0.75NBT-0.25ST为准同型相,此成分陶瓷的饱和极化强度很高,但剩余极化强度也很高,击穿场强不大限制了其储能应用。针对这些问题,本文通过掺杂“离子对”和添
面对电力安全的多项新挑战以及用户对供电质量提出的要求,电网的持续可靠运行和电力安全技术发展得到更多关注,其中故障定位、隔离及恢复供电是关键技术。由于外力破坏、自然灾害和线路老化等原因造成的断线故障和短路故障对系统安全稳定运行和人民生命财产安全造成很大威胁,而目前针对断线故障和短路故障的定位算法通用性和可靠性不强,故障定位算法还有许多问题需要解决。为此本文以新息图算法为基础,研究断线故障和短路故障的
电力系统暂态仿真是电力系统暂态稳定分析中应用最广泛的一种方法,在实际工程与应用中,已经成为电网规划、设计、运行、预测与分析的主要手段。在电力系统暂态仿真中,微分方程的求解方法至关重要,因此研究电力系统暂态仿真中的数值积分方法具有重要意义。精细积分-微分求积法是采用微分求积法处理微分方程中的非齐次项的一种改进新型计算方法。本文采用精细积分-微分求积法分别进行了电力系统机电暂态仿真、电磁暂态仿真以及考
对转永磁同步电机具有转矩波动小、功率密度高的优点,被广泛应用于水下推进、风力发电等领域。由于大功率开关器件以及空间矢量脉宽调制技术的使用,造成了严重的电磁干扰问题。驱动器产生的电磁干扰不仅会影响自身的正常工作也会对周围的设备造成影响。此外对转永磁同步电机需要额外使用电刷滑环向电枢绕组通电,增加了系统的集成度,使得电磁干扰的耦合路径更加复杂。因此本文针对对转永磁同步电机驱动器的EMI进行研究,主要工
相比化石燃料,核能具有能量密度极高、燃料储量丰富等优点,且其能量转化过程对环境污染更小。作为第四代核电技术的重要组成部分,弥散型核燃料在服役过程中反应均匀、温度梯度小,因而能达到更高的燃耗。随着核电站设计服役年限延长,为保证在核电站服役过程中安全稳定地运行,防止灾难性事故发生,需要对弥散型核燃料的断裂行为和失效进行预测。弥散型核燃料的等效弹性性质、辐照肿胀、蠕变等方面的力学性能已受到国内外专家学者
微型靶芯作为激光聚变靶丸间接驱动方式中黑腔的基体,其加工质量对黑腔的加工质量有着决定性的影响,也直接决定了激光聚变装置的点火成功与否。靶芯的尺寸加工精度要求达到微米级,表面粗糙度要达到纳米级,如果装夹和切削加工方法选择不当,极易使靶芯表面加工质量无法满足使用要求。因此,有必要对靶芯的装夹定位误差、多工序加工误差传递以及切削加工过程进行深入分析,建立靶芯的超精密加工表面微观形貌预测模型,实现对切削参
为避免传统固相摩擦纳米发电机(TENG)的劣势,改善电气输出性能,采用固-液双相摩擦的方式制备TENG。镓铟合金作液态金属汞的主要替代材料,将被用作液相摩擦材料,固相材料为聚酰亚胺(PI),提出一种通过质子辐照对固相摩擦材料PI表面改性,实现固液双相TENG提升的新手段。通过对辐照注量、辐照能量等参数对TENG性能影响的探究,并比较质子和电子辐照对TENG影响的差异及原因,获得PI与Ga-In共晶
随着电动汽车的不断发展,锂离子电池因具有高功率密度、无污染等诸多优点而被广泛应用。然而,在寒冷条件下锂离子电池容量衰减严重,充放电性能变差。因此,需要在低温条件下对锂离子电池进行加热。然而,现有的内部加热装置大多为非隔离型的有线加热,该方式存在易漏电、插头插座不匹配等问题。此外,目前研究的加热装置不能灵活的在线调整加热电流的幅值、频率,这降低了电池的加热速度。针对上述问题,本文提出了一种可调频、调
人类日益增加的空间领域活动加剧了对航天推进技术的需求,电推进由于具有比冲高、寿命长、结构紧凑等优势逐渐引起了航天界的关注与重视。为了满足达尔文计划,地球重力场反演,引力波探测等空间任务,各国研究机构加大了对微牛级电推进的研究力度。射频离子推力器因其良好的缩放特性及简单的结构,成为了微牛级推力器的不错选择。由于微型射频离子推力器存在点火困难的问题,因此本文在设计了一款4cm直径的推力器的基础上,对其
随着碳中和目标的提出,越来越多学者开始研究如何实现这一目标。在能源领域,可以通过碳捕集和低碳或无碳燃料实现这一目标。氨气作为一种不含碳元素的气体,可以作为燃料进行燃烧。理论上氨气完全燃烧产物只有水和氮气,是一种新颖的无碳燃料。相对于同样不含碳元素的氢气,氨气燃烧现象较为平缓,也方便储存;但是氨气实际燃烧存在许多问题。氨气燃烧不如烷烃燃料稳定,燃烧尾气中含有大量的燃料型NOx,这些因素都限制了氨气作