论文部分内容阅读
质子交换膜燃料电池(PEMFC)是适用于汽车,备用电源和便携式电源的能量转换装置。膜电极组件(membrane electrode assembly, MEA)是PEM燃料电池中关键部件之一,包含CL(CL),质子交换膜(PEM),GDL(GDL),边框及密封部件。影响PEM燃料电池得到广泛应用的一个工程挑战就是膜电极装配及其引起的水传输问题。本论文通过模拟和实验从机理上对这一问题进行分析讨论。(1)通过有限元模型首次分析了MEA中的边框材料,结构以及接触行为在组装过程对膜的应力影响。在膜与边框交界区域存在严重的应力分布不均。相比于齐边框组装,台阶式边框结合粘贴绑定接触行为组装时在膜上的应力分布更加均匀些。对于台阶式边框,边框材料不再是影响应力分布不均的主要因素;对于齐边框组装,为使膜上的应力分布均匀化,边框材料的机械特性应与膜相似。(2)运用多电极探针法区分出CL,GDL和BPP的体电阻(bulk resistances)和面电阻(contact resistances)。比较了碳CL,碳纸和碳布GDL材料和微孔层(MPL)的电阻。碳CL电阻是碳纸GDL体电阻的100倍以上。碳纸的体电阻和面电阻是碳布GDL的一半。对GDL进行压缩能够降低GDL面电阻,但是对体电阻基本无影响。对GDL进行疏水处理增加了面电阻,但是体电阻几乎无变化。MPL的添加能够显著减小面电阻,但是对体电阻基本无影响。根据实验建立了一个等效回路模型,并显示当流道宽度小于1mm时,电池电子电阻可忽略不计。面电阻是电池中主要的电子电阻,并占整个欧姆电阻的8%。(3)通过实验模拟分析阴极CL产生的水穿过GDL材料到达气体流道的路径和阻力。水的传输路径分为横向传输(在GDL与CL之间的界面传输)和纵向传输(在GDL中的大孔径中传输)。在纵向传输过程中,GDL中最大孔中的小孔径是限制水渗透的主要阻力。当水头压力足够大时,水才能进入并且穿过这些限制孔径。水在这些孔中流动时所需压力要小于水初始穿透这些孔所需压力。当GDL的压缩率小于20%,液态水在界面处的横向传输阻力小于液态水穿透GDL的阻力。(4)考察在不同的雷洛数和GDL压缩率下,水在带有弯道的单流道中的流动特性。气体能够从脊岸下的GDL中旁通到流道下游部分,同时也能从小水柱下的GDL中传输。根据实验结果,GDL中的水出口与流道弯道之间的距离d与对应的气体流量比应大于13%。在一个壁面为疏水性的多孔GDL材料,另三个为亲水性的亚克力壁面的矩形流道中,小水柱的形态为倒梯形。增加GDL压缩率有利于水的排出。与圆弧型弯道相比,残余液滴更容易挂在直角弯道处。在不同雷洛数下,流道中水的流动形态分为小水柱流动,液滴受挤压流动,拉长与收缩式移动,振动移动以及小液滴移动。(5)通过实验分析受压缩的GDL对气体旁通以及小水柱在平行流道中流动的影响。小水柱堵塞气体流道的横截面使得气体从小水柱下的GDL中流通或者从脊岸下的GDL中流通。气体在流道之间流通使得平行流道中的小水柱出现同步移动现象。气体在GDL中流通依赖于GDL的渗透率,而GDL渗透率是通过燃料电池组装时对GDL的压缩量决定的。分析了在一壁面为压缩GDL的平行流道中小水柱和气体旁通的流动特性。平行流道下的GDL通过脊岸受到压缩与燃料电池中BPP压缩GDL一致。根据实验结果,建立了气体在流道和GDL中的流动物理模型。此模型显示气体在相邻流道下的GDL中流通引起小水柱同步移动。通过设置实验程序,通过小水柱的体积和其越过相邻流道中的障碍水柱的距离可以确定流道下GDL的渗透率以及脊岸下GDL的渗透率。