论文部分内容阅读
本文内容分为两部分:第一部分包括第一、二、三章,第二部分为第四章。第一章讨论Finsler流形到黎曼流形调和映射的能量密度的间隙性,推广了[Se]中的结果。第二章对紧致Finsler流形上Laplace算子的第一特征值的下界作了估计,推广了黎曼流形上的Lichnerowicz-Obata定理[Li][Ob]。第三章给出了Finsler流形到Finsler流形映射的能量的第一变分和第二变分公式,得到了从紧致Finsler流形到某些特殊黎曼流形的非常值稳定调和映射的不存在性;第四章讨论黎曼流形中的紧致2调和子流形的一些性质。 微分流形上有许多内蕴度量,例如复流形的Cara—theodory度量和Kobayashi度量,一般说来它们不是Riemann度量,而是Finsler度量。Finsler度量是没有二次型限制的Riemann度量,Riemann在1854年的就职演说中已经涉及了这种情形。以Finsler度量为基础的几何学被称为Finsler几何。Finsler几何在生物、物理等方面都有重要应用([AbPa][AnZal][AnZa2][AnInma][As1][Bj][Mil][MiAn])。近年来,Finsler几何重新得到了重视和发展[BCS][Sh]。黎曼流形间的调和映射是微分几何和数学物理的重要内容。黎曼流形和Finsler流形都是度量空间,自然可利用一般度量空间调和映射的理论讨论Finsler流形间的调和映射。但由于控制Finsler流形性质的各种张量一般情况下很难应用到一般度量空间调和映射的理论中,使得这样的讨论大都是形式上的,并与一般度量空间调和映射的理论区别不大。黎曼流形间的调和映射自然也可看作出发流形和目标流形切丛之间的调和映射,利用Finsler流形上的Chern联络,文献[Mol]另外定义和讨论了从Finsler流形到黎曼流形的调和映射,它实质上是出发流形的射影化球丛到目标流形切丛之间调和映射,并给出了Finsler流形到黎曼流形映射的能量的第一变分公式: 其中T(φ)=(B▽(?)idφ)(ei)称为φ的张力场(见第一章)。 利用活动标架法,我们得到 命题。对于紧致Finsler流形M和黎曼流形N,若映射φ:(M,F)→(N,g)的张力场为零,那么下式成立:一艺(I功*e‘121功*e,l’一<功.e‘,功*勺><功*e‘,功.匀>)R‘eoN(功*。‘,沪*勺)其中e仲)=告艺,,、(a户)2艺,凡,,为△e(沪). 若在么正基下定义 B截以x):S=凡护二艺A,*,,峪a态萨。特别地,M是黎曼流形时, 1<X.X>。 J艺B凡、X‘Xl,x。砂TMj,l,s那么由命题显然有 定理.设。,b是正常数,使B几喇x)全。VX任砂TM,爪eoN三b,爪emN表示流形N的截面曲率。映射必:(M,F)份(N,功的张力场为零,并且仍ax(rank功)三p,p全2.如果能量密度满足e(沪)三 Pa2(P一1)b那么,功是常值映射或全测地映射。特别地,当e(司三命时,价必为常值映射. 对于尸£。sle:流形(材,r)到黎曼流形(N,。)的映射沪:(M,F)*(N,夕),当二(gh)=妈啼即=0时,沪的能量的第一变分为零,功为调和映射阿叫。众所周知,对于黎曼几何,调和映射是调和函数的推广,且当目标流形为R时,二(哟二△撇EL].因此对于尸‘nsler流形M上的函数。可以定义LaPtace算子为△。:=二(司二t与“亏血二艺‘叭,,这样的定义是有意义的.若△。二一加,。为M上的非常值函数,则称入为特征值,。为对应的特征函数.特征值估计是黎曼流形上分析的重要内容,而一般度量空间不存在截c改恒等式,虽然可以通过一般度量空间到R上的调和映射定义几。l,流形上的LaPlac。算子,但不可能对特征值进行估计。本文第二章首先给出了尸‘nsl,流形上对应Beroald联络的爪。恒等式: 引理.设。是凡。sler流形M上的函数,那么“£,J,k一廿‘,k,了U乞,7;Q=一。,B丑:*,,。‘B列;。·利用Ric蕊恒等式,按照本文的定义,通过试验函数和试验1一形式的选取就可得到 定理.设M是紧致无边的m维几二le:流形,如果存在常数K,使得B凡引x)全(。一l)K>0,VX〔矿TM那么对应于LaPlac。算子△的第一非零特征值凡全mK.特别地,当‘,二二K时,M的直径为六·当M是黎曼流形时,由Moer“定理的推论直接可知M与半径为去的球等距.因此入=。K时凡、ler流形上的结论也是黎曼流形上情况的推广. 文献!Ms]提出了凡、ler几何的某些未解决问题,其中之一就是研究八nsler流形间的调和映射,计算几nsler流形间的映射的能量的第一变分和第二变分公式当然是凡nsler流形间的调和映射的基本内容。作为!M叫的推广,本文第三章首先定义了F认sler流形间的映射的能量,它其实是出发流形的射影化球丛到目标流形的射影化球丛的映射的能量,通过计算可得 定理.设M是紧致无边的。维凡、sle:流形,沪:(M,F)一(丽,旬为非蜕化的光滑映射,沪。为功的变分,v为功,诱导的变分向量场,那么能量泛函E(盛)的第一变分为d、.丽万(丸)lt一“- lVof(Sfn一‘)五。<·‘&),v>‘“Vsar’其中这里丁(功)一*r;(“云‘一‘d小4,:,口#(d,,F(·云誉一‘种)(·))+‘r。。#(d‘,d‘,FZ(“令雪一’d