CoFe2O4/Ti3C2Tx MXene复合材料的制备及其吸波性能的研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:anmy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电子设备和无线通信技术的迅速发展和广泛使用产生了大量的电磁波,不仅影响了设备的运行,而且会对人体健康造成危害。因此,轻量化且高性能的微波吸波材料对于控制电磁污染和保护人体健康来说是必不可少的。作为一种典型的新型二维材料,Ti3C2Tx MXene独特的层状结构、大的比表面积、丰富的天然缺陷和表面官能团使其成为一种很有潜力的微波吸收材料,但其单介电损耗机制和窄吸收带宽限制了其实际应用。为了解决上述问题,本课题引入了具有高饱和磁化强度和高电磁性能的CoFe2O4,合成了CoFe2O4/Ti3C2Tx复合材料,使CoFe2O4纳米颗粒均匀包覆在二维层状Ti3C2Tx的表面并插入Ti3C2Tx层间。将Ti3C2Tx良好的导电性能、优良的化学稳定性和热稳定性与纳米CoFe2O4优越的磁学性能结合起来,从而达到改善阻抗匹配、增强吸波性能的目的。本文主要工作及研究结论如下:(1)使用化学刻蚀法成功制备了二维层状Ti3C2Tx MXene;使用不同插层剂对Ti3C2Tx进行扩层处理后发现,在所选插层剂中,尿素对其扩层效果最好,并且增大了Ti3C2Tx的晶粒尺寸;Ti3C2Tx在800、950、1100℃退火处理后均保持原有的二维手风琴状形貌,并且当退火温度为800℃时,产物Ti3C2-800中生成了 TiO2和非晶碳。(2)使用不同方法制备棒状和球状两种形貌的磁性CoFe2O4纳米材料。确定棒状CoFe2O4的制备参数为:乙二醇与水的配比为3:1、溶剂热反应温度为120℃、溶剂热反应时间为24h、退火温度为750℃,在该反应参数下制备出了形貌尺寸均匀、棱角规则,长径比比较大的棒状CoFe2O4:使用溶胶凝胶法在退火温度为300℃时得到了纯球状的CoFe2O4;使用溶剂热法在溶剂热反应时间为16h,反应原料为氯盐时制备了球状CoFe2O4,CoFe2O4平均粒径约为155 nm且分散性较好。(3)单相球状CoFe2O4在厚度为1.9 mm时,在10.7-17.7 GHz间出现7.0 GHz的EABmax(最大有效吸收带宽);样品厚度为2.3 mm时,在10.7 GHz处出现RLmin为-59.3 dB。使用溶剂热法成功将球状CoFe2O4牢固附着并且均匀的包覆在Ti3C2Tx表面或插入到Ti3C2Tx的夹层中,制备了不同CoFe2O4含量球状的CoFe2O4/Ti3C2Tx复合材料,当CoFe2O4含量为70%,复合材料在厚度为1.0 mm时已经出现有效吸收;当CoFe2O4含量为80%时,复合材料的RLmin为-77.2 dB,EAB为3.3 GHz,对应的样品厚度也仅为2.6 mm;而当 CoFe2O4 含量为 90%时,EABmax为 6.5 GHz。
其他文献
柔性聚偏氟乙烯三氟乙烯(P(VDF-TrFE))聚合物因其独特的压电、热电和铁电性能备受关注,但其介电和压电常数低于无机材料;锆钛酸钡钙((Ba1-xCax)(Ti1-yZry)O3,简称BCTZ)陶瓷具有压电常数高、介电损耗低、相对介电常数大等优点,然而其可塑性、柔性较差,而柔性聚合物基压电复合材料具有以上两者的优点。本文首先制备了BCTZ/P(VDF-TrFE)复合材料,利用XRD、SEM、铁
二氧化钒(VO2)是相变材料中关注度最高的一种,不仅是因为其优异的相转变特性,更重要的是VO2的金属-绝缘体相转变温度(68℃)最接近室温,并且可以通过尺寸控制、掺杂、复合等途径改变其相变温度,在温控包装和防伪包装领域具有广阔的应用前景。通过构筑VO2复合结构,可以有效提高VO2的光学性能。VO2/SiO2由于其粒径可控、多功能性和高稳定性,受到越来越多研究人员的重视,目前已被用于制备稳定性高、光
麦秸秆是我国十分丰富的生物质资源,将其用于制备植物纤维复合材料是一种环保且经济的高值化利用方式,而对麦秸秆复合材料各项性能的探究与改性增强有助于扩大其应用范围,在植物纤维循环与资源化利用、绿色环保及新材料开发等方面具有长远的现实意义。本论文以麦秸秆纤维(WSF)与高密度聚乙烯(HDPE)为原料,通过熔融共混与立式注塑工艺制备WSF/HDPE复合材料。系统分析了不同目数WSF的纤维形态、化学结构、结
将聚合物与生物质结合形成杂化物或偶联物是有机/有机系统的创新,在传感器、医学和材料科学等方面具有重要前景。聚吡咯因具有较高的电导率、环境稳定性好、易于合成、高热稳定性和无毒性等特点,在诸多领域都有潜在的应用前景。但是,聚吡咯薄膜因缺乏粘附性且脆性大很难将其应用到柔性电子传感器件上。同时,聚吡咯沉淀不太稳定的粘附性阻碍其被更好地利用起来。针对此问题,本文提出将具有类淀粉样组装结构的蛋白质聚集体与聚吡
近年来,微结构表面润湿性受到了广泛关注。通过构筑表面微观结构可增强表面润湿性,形成超疏水、超亲水表面,因此,在生活、医药、微生物研究以及微机电系统等领域都有着广泛应用。但微结构表面的流固相互作用十分复杂,对表面制备的精度及其微结构间的浸润观测手段要求十分严苛,实验条件往往难以准确观测其表面的浸润效应,因此,借助数值计算方法对流体浸润行为的研究有着重要的理论指导意义。格子Boltzmann方法是通过
ZTA(氧化锆增韧氧化铝陶瓷)/高铬铸铁复合材料作为大型工况设备中立式磨机、反击式破碎机的磨辊、板锤等耐磨件被广泛应用。由于陶瓷相和金属相的理化性能差异过大,二者润湿性特别差,因此复合材料的界面结合强度非常弱,在外力作用下,界面处极易产生裂纹而发生断裂失效。故本文通过向Al2O3及ZrO2陶瓷粉体中掺杂合金元素Ti、Ni,来改善高温下固/液界面的润湿性、结合强度与元素扩散效果,为ZTA陶瓷/高铬铸
孤立波作为一种良好的信息载体,在无损检测领域拥有广阔的应用前景。本文基于一维颗粒链中的高度非线性孤立波与损伤复合材料板的耦合作用,探究损伤复合材料板的特征参数对回弹孤立波的影响,通过分析孤立波在待测结构表面的反射特性以达到无损检测的目的,具体研究内容如下:(1)研究颗粒链与复合材料层合板的耦合作用:基于Hertz接触定律得到相邻颗粒之间接触力和压缩量的关系,利用经典牛顿定律推导得到了一维均质颗粒链
在经济快速发展,商业繁华及城市化进程加快的过程中,城市用地越来越紧张,各种超高层建筑拔地而起,因此带来的消防隐患问题也日渐突出。超高层建筑受其建筑特点的限制,一旦发生火灾,往往后果极其严重。针对超高层建筑火灾特点和灭火难点,本文结合机械臂良好的运动性能,进行了超高层建筑智能灭火救援系统设计,及其数字动画展示研究,以期对超高层建筑的灭火救援提供参考和借鉴。本文的研究内容如下:(1)对超高层建筑智能灭
本文利用40 μm的AZ91D合金雾化球形粉和单壁碳纳米管(SW-CNTs),通过高能球磨、往复挤压和正挤压工艺制备了 xSW-CNTs/AZ91D(x=0wt%、0.5wt%、1.0wt%、1.5wt%)复合材料丝材,研究了 SW-CNTs含量对复合材料丝材组织与性能的影响,分析了复合材料的强韧化机制和摩擦磨损机制。利用该丝材通过电弧增材制造技术(Wire arc additive manufa
石墨烯纳米片(Graphene Nanoplatelet,GNP)由于具有超高强度和优异的导热、导电性等特性,在与铜(Cu)及其合金复合制备的铜基复合材料(Copper Matrix Composites,CMCs)不仅有望能够保持Cu基体的导电性,同时能够实现GNP和Cu的协同强化作用,从而满足电子工业领域对高强高导材料的性能要求。然而,如何促进GNP的分散以及改善GNP与Cu之间的润湿性是目前