论文部分内容阅读
高强度聚焦超声(High Intensity focused Ultrasound,HIFU)是一种无创或微创的肿瘤治疗技术,现已应用于临床治疗各种实体肿瘤。但由于无创实时监控、治疗剂量等问题尚未解决,在临床治疗过程中可能发生肿瘤组织残存或过度治疗等临床问题,使其安全性和可靠性无法保障。研究目的:通过数值仿真方法研究HIFU肝肿瘤的治疗剂量,讨论分析不同输入剂量时温度场分布以及组织声学特性、聚焦深度对治疗焦域位置、大小、形状的影响,为临床HIFU治疗剂量的制定和个性化HIFU治疗计划制定提供理论参考数据和理论依据。研究方法:采用森田长吉等人根据Westervelt方程式提出的高强度超声波非线性传播近似式和Pennes生物热传导方程,以离体猪肝组织为例,通过时域有限差分法(Finite Difference Time Domain,FDTD)数值计算不同时间和空间超声波非线性传播声压、质子传播速度和温升。同时在对比分析温度阈值法和等效热剂量阈值法之间差异的基础上,确立本研究采用的HIFU治疗焦域仿真量化方法;利用该方法,分析讨论组织声学特性对HIFU温度场的影响,以及不同HIFU治疗剂量下形成治疗焦域的特性,并将仿真结果和实验结果进行对比分析。研究结果:1.等效热剂量在声轴上的分布曲线比温升曲线相对更集中于焦点附近;焦点处等效热剂量的上升率高于温升率;采用不同温度阈值和不同等效热剂量阈值得到的治疗焦域大小不同,不同等效热剂量阈值间的差异比不同温度阈值间的差异小。2.当输入声强为1.OW/cm2,照射时间5s时,考虑声学特性比未考虑声学特性时的焦点温升高4.81℃,治疗焦域长轴却比未考虑声学特性时小0.3mm;照射时间越长,组织声学特性的影响越明显。3.照射时间一定时,随着平均输入声强的增加,治疗焦域的长轴和短轴均非线性增加,且长轴变化幅度比短轴的大。4.输入声强一定时,焦域长、短轴长度随着照射时间的增加也均非线性增加。5.聚焦深度越深,实际形成焦点位置离几何焦点越远,焦点处最高温升越低,形成的治疗焦域长、短轴长度越短,长轴的变化大于短轴的变化。6.在某一聚焦深度和相同长轴长度条件下,声强越高,所需的时间越短,声强越低,所需照射时间越长,声强和照射时间呈负相关,同时短轴长度变化较小。7.相同输入条件下,实验所得的损伤焦域长、短轴和仿真结果相比差异较小,仿真的焦域面积均比实验的焦域面积略大,仿真和单次实验结果吻合较好。结论:1.等效热剂量在声轴上的分布曲线比温升曲线相对更集中于焦点附近;焦点处等效热剂量的上升率高于温升率;采用不同温度阈值和不同等效热剂量阈值得到的治疗焦域大小有差异。2.长时间照射时,组织声学特性的影响不可忽略。3.当照射时间一定时,焦域长、短轴长度均随着输入声强的增加而非线性增加;4.当输入声强一定时,焦域长、短轴长度也均随着照射时间的增加非线性增加。5.随着聚焦深度的增加,治疗焦域的长、短轴长度均变短。6.等焦域长轴长度时,照射时间与输入声强呈负相关。