【摘 要】
:
中低温地热能(<200℃)具有清洁环保、储量丰富、不受气候影响等诸多优势,高效开发中低温地热能发电可降低化石燃料消耗、减少温室气体排放。目前,有机闪蒸循环(Organic Flash Cycle,OFC)是适宜中低温地热能发电的技术。然而,低压节流阀在节流过程中的高不可逆性导致传统OFC系统效率较低,而喷射器可有效避免OFC中较大的节流损失,提升系统效率。本文针对喷射式有机闪蒸循环(Organic
论文部分内容阅读
中低温地热能(<200℃)具有清洁环保、储量丰富、不受气候影响等诸多优势,高效开发中低温地热能发电可降低化石燃料消耗、减少温室气体排放。目前,有机闪蒸循环(Organic Flash Cycle,OFC)是适宜中低温地热能发电的技术。然而,低压节流阀在节流过程中的高不可逆性导致传统OFC系统效率较低,而喷射器可有效避免OFC中较大的节流损失,提升系统效率。本文针对喷射式有机闪蒸循环(Organic Flash Cycle with Ejector,喷射式OFC)进行了研究,构建了地热水驱动的喷射式OFC系统热性能模型,并应用MATLAB 2019a进行了模拟分析,本文的主要内容和结论如下:(1)对传统OFC系统和喷射式OFC系统的结构构成以及工作原理进行了介绍。并对关键构件喷射器进行了介绍和分析,建立一维“恒压混合”喷射器模型。在此基础上,根据第一热力学定律和第二热力学定律,建立喷射式OFC系统的热力学模型和(火用)分析模型,确定了系统模型的变量以及系统性能参数的计算式。(2)选取R601作为循环工质,研究主要循环参数、地热水质量流量以及喷射器各段效率等参数对喷射式OFC系统性能的影响。结果表明:随闪蒸压力的增大,系统净输出功率、热效率及(火用)效率先增大后减小,总(火用)损失先减小后增大;增大吸热温度后或减小冷凝温度均能够提高系统性能;地热水流量变化不影响系统热效率及(火用)效率;提高喷射器各段的等熵效率均能够提高系统的性能,但提升较小。(3)针对100-200℃的地热水,选取R601、R600、R600a、R227ea、R236fa、R236ea、R1234ze和R1234yf八种有机工质作为循环工质。以系统净输出功率最大为目标,对闪蒸压力进行优化,分析了不同工质系统的最优闪蒸压力随地热水进口温度的变化情况;并在此基础上,考察了不同循环工质热物理性质与地热水进口温度之间的关联性,以及不同循环工质系统的热力性能随地热水进口温度的变化规律。结果表明:各循环工质均存在一个特征温度,其值为工质吸热压力上限所对应的饱和液态温度和夹点温差之和,当地热水进口温度大于特征温度时,净输出功率的增幅减缓,总(火用)损的增幅加快,热效率与最优闪蒸压力保持不变。(4)以R601为例,比较了闪蒸压力对传统OFC系统和喷射式OFC系统的净输出功率及总(火用)损失的影响,并在最优闪蒸压力下,对两种循环系统的性能进行了比较分析。结果表明:当地热水进口温度一定时,在相同的闪蒸压力下,与传统OFC系统相比,喷射式OFC系统的净输出功率更大、总(火用)损失更小,且随着闪蒸压力增大,差距增大;此外,在地热水100-200℃范围内,喷射式OFC系统的性能均优于传统OFC系统,其净输出功率的相对增大率为1.67-21.98%,且随地热水进口温度的增大而减小。
其他文献
船舶智能化技术体系是在通信系统、传感器、物联网系统以及互联网技术的帮助下建立起来的分析体系。它可以系统化和网络化地分析港口信息、物流信息以及海洋环境信息。它对船舶的导航、管理和维护工作具有重要意义,并且整体技术体系坚持环境保护和经济性。在这样的背景之下,船舶智能管理系统应运而生。船舶智能管理系统前端采用React框架,使用Axios对数据请求功能进行封装,改进前后端通信的方式,并用WebSocke
随着当今社会人口老龄化加速和居民健康意识提高,越来越多的居民倾向于去医院进行体检。实验室自动化的产生为居民的医疗保障提供了良好的契机。采血管前处理系统作为实验室自动化系统中最为重要的一环,有着极为重要的研究价值。该系统的主要作用就是快速的将杂乱无序的采血管分类、自动装载离心、去盖,方便采血管检测设备进行分析。本课题主要研究一种适用于中国当前医疗特点的采血管前处理系统,该系统适用于三类离心采血管、两
数据驱动控制是一种不依赖于动态系统数学模型的新的控制方法。它的显著优点是能有效利用生产过程中存储的大量数据设计控制器,减小计算负担,且当外界发生改变时无需改变控制器的结构。迭代学习控制作为一种具有高精确度的控制方法,能在有限次的迭代学习后实现对期望轨迹的完全跟踪。而数据驱动迭代学习控制(Data-driven Iterative Learning Control,DDILC)则充分利用了二者共同的
海洋生物污损会给船舶带来极大的危害,常用防污涂料大多含有有毒防污剂,这些物质大量释放、累积后会对生态环境造成危害,其使用也受到越来越严格的限制。以聚二甲基硅氧烷(PDMS)为主体的环境友好的污损释放型防污材料已商业化应用,具有良好的发展前景。然而该类材料在船舶静止时防污性能还不理想、基体强度相对较低。为此,本论文选用抗蛋白吸附性能好的两性离子聚合物,对以PDMS为主体的硅橡胶材料表面和PDMS基体
近年来,机器人技术在现代工业生产中广泛应用,并带来了实际生产效益,使其得到了越来越多的关注和重视。其中,机械臂的运动规划和控制是机器人技术中一个重要的组成部分。在冗余度机械臂的实际运动规划当中,关节速度及加速度是否保持平稳连续是影响其操作性能的重要指标之一。但是,由于工作空间的环境扰动、运动规划方案的选取以及实际给定任务的执行要求等原因可能会造成机械臂关节速度或加速度的跳变或者偏离期望规划值的现象
随着人类社会的发展,能源与环境面临着双重危机,能源是人类社会进一步发展的保障,而环境则是人类赖以生存的根基。因此寻找清洁能源和转变能源使用方式是解决当前能源与环境问题的关键。燃料电池是一种高效且清洁无污染的能源转换设备。传统燃料电池的阴极材料都是Pt基贵金属来担任,由于Pt基贵金属价格昂贵、资源稀少且其耐久性差,因此寻找新型燃料电池的电极材料是解决燃料电池当前困境的关键。由于新兴的二维材料和单原子
液晶是软物质的重要代表之一,是一种兼有晶体有序性和液体流动性的中间态物质。液晶具有自愈性、环境刺激响应性、适应性等特点,是一类重要的智能材料。多功能有机材料越来越受到人们的重视,将功能性基团引入液晶化合物是获得多功能液晶材料的一种有效手段。荧光化合物是当前药物化学的研究重点。荧光化合物可以作为药物载体、用于药物释放研究以及基于荧光化合物开发的具有成像、靶向、治疗的多功能药物。我们将荧光基团引入液晶
张量特征值问题是张量理论研究的重要课题之一.在这篇论文中,我们主要研究了不可约非负张量的Z-特征对的性质,并且计算出了不可约弱对称非负张量的Z-谱半径的一个更好的界.首先,我们主要介绍了高阶张量特征值和特征向量的历史背景和理论意义,阐述了Z-特征对的实际应用和研究现状,并进一步说明了本文的主要工作.其次,我们介绍了张量的一些基本理论知识,引出了张量Z-特征值和Z-特征向量,不可约非负张量,弱对称张
质子交换膜燃料电池(PEMFC)由于具有能量转换效率高、可以在低温条件下快速启动以及在运行过程中实现零排放等优势,被认为是解决全球能源危机及环境污染的最终答案之一。作为商业化阶段中最有前景的燃料电池类型,各国对于氢能及配套产业的重视程度与日俱增,但是PEMFC的大规模应用仍然受到其成本较高及催化剂的耐久性不足等问题的限制。因此,针对Pt基催化剂的电化学催化活性、原子的有效利用效率及酸性环境中稳定性
在近年来的研究中发现,具有铁磁/反铁磁结构的磁性纳米材料和薄膜材料界面处存在着交换耦合作用。交换偏置作为交换耦合的主要表现形式,指的是当高于反铁磁奈尔温度对其施加外磁场进行冷却,材料磁冷后的磁滞回线会发生明显水平偏移。由于其在自旋电子学器件和自旋阀等领域存在着广阔的应用前景,此类材料引起了研究人员的广泛兴趣。在交换偏置材料的应用研究中,受材料本身性质的影响,不同材料所具备的交换偏置大小也存在差异。