图的交叉数的研究

来源 :湖南师范大学 | 被引量 : 0次 | 上传用户:jxj860205
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
图的交叉数问题,起源于二战期间Pual Turán在砖厂碰到的一个实际问题,后来逐渐发展成为了图论学科中非常活跃的一个分支,吸引着大批国内外学者的关注和研究.然而,确定一般图类的交叉数是一个NP-完全问题.因此,到目前为止有关图的交叉数的结果比较少,仅限于一些特殊简单图的交叉数.甚至在许多情况下,试图找出图的交叉数的一个好的上界或者下界也是很困难的.本文运用归纳思想以及反证法,确定了两个特殊图:一个六点图G1与路Pn的联图,以及一个五点图G2与路Pn的联图的交叉数的精确值,并试图研究了关于完全二部图K5,n的一般性质.全文由5个章节组成.   第一章介绍了交叉数的起源,交叉数研究的理论与实际意义,以及目前交叉数研究在国内外的发展情况.同时还简要介绍了本文的主要结构.   第二章介绍了阅读本文所要用到的图的交叉数方面的基本概念和预备知识.   第三章得到了图Gj(j=1,2)与路Pn的联图的交叉数.   第四章讨论了关于完全二部图K5,n的一些性质.   第五章给出了本文的总结.
其他文献
向量优化理论是优化理论和应用的主要研究领域之一。对这一问题的研究涉及到凸分析、非线性分析、非光滑分析、偏序理论等多门学科。同时它在经济分析、金融管理、工程设计、
为了预测原核生物中的直系同源关系,我们开发了一种新的算法,称之为GOST(Globally optimized STrategy)。与现有方法所不同,我们考虑了原核生物操纵子的结构在进化过程中的保守
本文研究了一类具有时滞的HIV体内感染模型,在文献[1]的基础上,引入了以受感染T*细胞释放出病毒的持续时间为时滞参数。通过Routh-Hurwitz准则和构造Lyapunov函数及对系统非
学位
线性规划问题是研究变量在仿射集和凸多面体交集上的一类凸优化问题.作为线性规划的推广,二阶锥规划也是一类凸优化问题,它是在一个仿射子空间和有限个二阶锥的笛卡尔乘积的交
本文主要研究了基于小波分析的NN-GARCH模型及其在上证指数预测中的应用。该模型将小波分析理论和神经网络同时应用于金融时间序列的建模分析,既发挥了小波多分辨分析的去噪作
学位
本文旨在考考虑具有可乘白噪声的FitzHugh-Nagumo格点系统的随机吸引子。通过ornstein-Uhlenbeck变换,将系统化为随机变量作为系数的随机微分方程,其解确定一个随机动力系统