各向异性障碍问题弱解的局部正则性和局部有界性

来源 :河北大学 | 被引量 : 1次 | 上传用户:leoncici617
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A-调和方程是一类重要的拟线性椭圆方程,其弱解的正则性和有界性是A-调和方程理论中的经典结果。本文主要在各向异性空间下讨论A-调和方程弱解的性质。我们的工作主要集中在两个方面:一方面是关于齐次A-调和方程的障碍问题弱解的局部正则性;另一方面是关于非齐次A-调和方程的障碍问题弱解的局部有界性。适当的改变方程所满足的一些条件,通过构造实验函数,并结合一类特殊的Sobolev不等式和一些基本不等式,证明了A-调和方程弱解的正则性和有界性。
其他文献
学位
本文研究了上三角矩阵半群的有关性质。用S表示全体上三角矩阵构成的集合,显然 S按照矩阵的乘法运算构成一个半群。探讨了上三角矩阵半群的正则元,幂等元,极大正则子半群以及格
本文对关于Grunsky微分算子的紧性问题进行了研究。在经典的几何函数理论以及万有Teichmiiller理论的研究当中,Grunsky算子有着很重要的作用。我们已经知道,Grunsky映射在万有T
本研究定义了可数离散Amenable群作用下次可加势的局部拓扑压,并证明了相应的局部变分原理。具体地,给定一个拓扑动力系统(X,G),G为可数离散Amenable群,X上的一个开覆盖U,和(X,G)上
图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代
Bernoulli数及Bernoulli多项式在数论、组合学、数量分析理论等领域有很多重要的应用.Genocchi数,Stirling数,正切数,余切数等都与Bernoulli数有密切的关系.十七世纪,数学家J