【摘 要】
:
随着集成电路技术的发展,工艺制程逐渐逼近极限,单核处理器已经进入了瓶颈期,多核处理器应运而生,受到了广泛的关注。任务调度算法是多核处理器并行计算能力能否充分发挥的关键因素之一。在对现有多核处理器静态任务调度算法广泛研究的基础上,以基于复制的任务调度算法作为研究对象。针对现有算法中存在的关键路径估算误差较大、解空间搜索不充分等问题,分别提出了面向异构多核处理器的带资源约束的任务复制调度算法TDSA-
论文部分内容阅读
随着集成电路技术的发展,工艺制程逐渐逼近极限,单核处理器已经进入了瓶颈期,多核处理器应运而生,受到了广泛的关注。任务调度算法是多核处理器并行计算能力能否充分发挥的关键因素之一。在对现有多核处理器静态任务调度算法广泛研究的基础上,以基于复制的任务调度算法作为研究对象。针对现有算法中存在的关键路径估算误差较大、解空间搜索不充分等问题,分别提出了面向异构多核处理器的带资源约束的任务复制调度算法TDSA-RC和面向同构多核处理的基于遗传迭代的任务复制调度算法TDSA-GI。其中,TDSA-RC算法通过在参数计算过程中补充资源约束条件,使得参数计算更加精确。TDSA-RC算法同时还通过改进布局优化方式,扩大算法解空间搜索范围;通过补充冗余任务筛除环节,减少任务复制过程中产生不必要的计算。TDSA-GI算法则是通过将任务复制与遗传迭代相结合,借助遗传算法优秀的解空间搜索能力,提高调度算法性能。同时,针对TDSA-GI算法,本文提出了基于层级的宏块划分,以解决迭代复制类算法可能出现的复制节点失效等问题。为验证TDSA-RC算法和TDSA-GI算法的性能,选取最终布局的调度长度作为评判算法性能的标准。通过随机生成的任务图和三种实际应用的任务图的调度对比实验,测试TDSA-RC算法与TDSA-GI算法的性能。实验结果表明,与现有算法相比,TDSA-RC算法和TDSA-GI算法,均能提高任务的并行度,缩短任务的执行时间。
其他文献
随着半导体工艺的进步,电路的供电电压不断降低,电压域模拟电路的设计与优化愈发困难,集成电路的“数字化”已经成为一种趋势。先进集成电路工艺在时间域量化的精度已经达到皮秒级,随着工艺的发展,时间域量化的优势将愈发明显。时间数字转换器(TDC)用于测时电路,可以将输入的时间域信号转换为数字信号,在激光测距、量子物理、分子影像等诸多领域都有着广泛的应用,高精度、大测量范围时间测量技术已经成为当前的研究热点
随着5G时代的到来,“万物互联”的大趋势正在兴起。跟随这一趋势而来的是终端设备的不断增加,这使得网络中的数据量产生了爆炸性的增长。同时,大部分终端设备上的应用对时间延迟极为敏感。这意味着传统的云计算技术已经很难满足越来越高的用户需求,边缘计算因此诞生。然而靠近设备的边缘服务器所提供的计算资源是有限的。因此,对任务传输和卸载策略进行进一步研究,降低传输时延、平衡边缘计算网络中的计算负载有着重要的意义
MEMS扫描镜作为MEMS激光雷达系统的核心部件,是一种获取空间物体三维信息的微执行器。近年来,随着智能化汽车的快速发展,MEMS激光雷达逐渐成为智能驾驶汽车的核心传感器之一,并得到了广泛的关注和研究。车载激光雷达的应用环境对MEMS扫描镜提出了以下要求:要求具有较大尺寸的反射面积;要求在较高频率下运动(k Hz量级);要求具有较大的偏转角度。这些要求成为高精度和高分辨率MEMS扫描镜发展过程中亟
随着人工智能和物联网移动应用的快速发展,人脸识别、增强现实等新型应用被广泛地应用在各种移动设备中。然而移动设备受到体积、电池容量等因素的限制,难以满足新型应用对时延和能耗的需求。移动边缘计算技术的出现为解决该问题提供了新的方式,该技术将计算密集型的应用卸载到计算资源丰富的边缘服务器上执行,有效地降低计算任务的执行时延和能耗,提升运营商对用户的服务质量。但移动边缘计算技术在带来诸多优势的同时,也存在
合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,In SAR)是一种主动式三维遥感测绘技术,它具有观测范围大、测量精度高,可以全天时、全天候对地面进行观测的优点,在数字高程重建、地表形变监测、冰川运动研究等领域具有重要的应用价值。为获得可靠的In SAR测量结果,需要对干涉数据进行高精度的处理。然而,由于干涉数据间失相干效应以及干涉相位周期性
异构多核处理器为嵌入式系统的发展注入了新的活力,由于其集成了多种不同类型的处理核,能够满足多样化的应用需求。相比传统的同构平台,异构多核平台能够极大地提升系统的性能。然而,随着处理核数量和类型的增加,系统资源分配问题也变得愈加复杂。异构多核系统中的映射问题,抽象出来就是如何基于优化目标(性能、能耗等)将任务分配到处理核上,合适的映射方案能够极大地提升系统性能。通常,应用在执行过程中,程序不同的执行
机器对机器(Machine to Machine,M2M)通信以全机械自动化的环境为基础,通过有线或无线链路接入智能设备,使其无需人工直接干预即可互联互通,是下一代通信系统中一项很有前途的技术,广泛应用于智能电网、公共监控、智慧交通、电子医疗保健等领域。目前,M2M主要依靠传统网络进行通信,而传统网络起初是服务于人对人(Human to Human,H2H)设备通信的,又因M2M与H2H通信系统之
伴随现代导航技术的飞速发展,中国自主建设了北斗卫星导航系统,可为全球范围内的军民用户们提供海、陆、空导航定位和授时服务,北斗卫星导航系统的建立快速推动了中国的安全和经济发展等领域的发展。在北斗的高精密定位中,载波相位差分是主要的一种定位方式,主要依赖于载波相位观测值,而周跳是载波相位定位过程中常常遇到的问题,周跳的发生将使载波相位观测值发生变化,大大降低定位精度,因此准确地探测和修复周跳对北斗卫星
作为高精度探测仪器,有源相控阵雷达的阵面天线均能独立收发电磁波,因而有源相控阵雷达能够高效、准确、稳定地探测和跟踪目标,使得它在军事、导航和通信等领域中拥有极其重要的作用。有源相控阵雷达在工作时,由于天线热源的热功耗使得阵面发生热变形,一定程度上恶化了雷达的馈电性能,因而对雷达热变形的仿真预测和补偿研究是提高雷达性能的重要措施之一。采用传统有限元仿真由于并未考虑结构的形体边界约束带来的非相似性热变
伴随着互联网技术的快速发展,基于定位的服务已经融入了我们的生活,变成日常生活中不可缺少的一部分。而随着移动设备的快速更新,许多的移动应用也嵌入了定位功能。在室外环境下,北斗定位系统,全球定位系统(GPS),伽利略系统等等基于卫星信号和雷达的定位技术已经非常成熟,并且由于具有抗干扰能力强,精度高,实时性好等特性,这些定位系统已经可以满足广大人民的日常生活需求。但是在人们经常活动的室内环境中,GPS等