论文部分内容阅读
本文以从德国引进的4个杨树杂种无性系L4[Populus×canescens(Ait.)]、L2[Populus×canescens(Ait.)]、E4(Populus tremula L.×P. tremuloides / Brauna×Tur141)、E2(Populus tremula L.×P. tremuloides / Brauna×Tur141)为试验材料,分别对其组培繁殖体系、苗期生长及光合特性进行了研究,并结合当地栽培的毛白杨(Populus tomentosa Carr.)、中林46杨(Populus×euramericana cl. Zhonglin46.)、藏青杨(Populus szechuanica Schneid. var. tibetica schneid.)进行了抗寒性评价。其中主要方法包括电阻抗图谱法(EIS法)、电导法(EL法)和相关生理指标测定。相关生理指标包括:POD酶、SOD酶活性、MDA含量、可溶性蛋白质、可溶性糖和游离脯氨酸含量。通过多种方法结合,确定其抗寒顺序,为引种提供一定的科学依据。主要研究结果如下:1、不同无性系组培诱导分化过程中对植物生长调节剂反应不同。随着6-BA浓度增加,L4和L2的分化率出现逐渐降低的趋势;而无性系E4和E2的分化率则呈先升后降的趋势;随着6-BA浓度增加,所有无性系株高逐渐减小,并且增殖芽出现玻璃化现象。当6-BA浓度相同时,随着IBA浓度增加,分化率均出现下降趋势。无性系L4和L2的最适增殖培养基为MS +6-BA 0.3 mg·L-1 +IBA 0.1 mg·L-1;无性系E4和E2的最适增殖培养基为MS +6-BA 0.5 mg·L-1 +IBA 0.1 mg·L-1。2、植物生长调节剂对不同无性系茎段生根过程影响存在差异。随着IBA浓度增加,无性系L4和L2的主根逐渐变短,侧根先增多后减少;随着NAA浓度增加,主根越来越短,毛状根和愈伤化现象越来越严重。对于无性系E4和E2,由NAA诱导的根通常较短,随着NAA浓度增加,植株基部逐渐出现愈伤化现象,且块状愈伤组织随之增大;由IBA诱导的根通常较NAA长,随着IBA浓度增加,侧根逐渐增多。分析得出无性系L4和L2的最适生根培养基为1/2MS +IBA 0.3 mg·L-1;无性系E4和E2的最适生根培养基为1/2MS +IBA 0.5 mg·L-1。3、各无性系的移栽成活率均达95.0 %以上,定植成活率在90.0 %以上,且生长正常。4、无性系L4和L2、E4和E2的苗木速生期是7~8月,这一时期高生长占全年生长量的34 %~40 %,无性系间差别不大;地径生长也呈上述规律。5、无性系L2和E2的光合速率日进程呈先升后降的趋势,其变化呈明显的单峰曲线,峰值分别出现在14:00和12:00。无性系L4和E4则呈先降后升再降的趋势,其变化呈明显的双峰曲线,在8:00左右出现次峰值,随后分别在12:00~10:00左右出现峰值。6、无性系L4和L2、E4和E2蒸腾速率日进程均呈先升后降再升的趋势,其变化呈明显不对称双峰曲线,在10:00左右出现峰值,随后在14:00左右出现次峰值。7、胞内电阻率(ri )是杨树进行电阻抗图谱拟合最适合的参数。8、采用EIS法对低温处理下无性系抗寒性分析发现,所有无性系ri均随处理温度降低而增大,呈非典型“S”曲线,与处理温度呈负相关;相对电导率变化也呈上述规律。EIS法与EL法之间存在一定相关性。9、通过对ri进行Logistic方程拟合求出LT50,以LT50为指标将各无性系进行抗寒排序:藏青杨>E4>E2>中林46杨>毛白杨>L4>L2。10、通过对相对电导率进行Logistic方程拟合求出LT50,以LT50为指标将各无性系进行抗寒排序:藏青杨>E4>E2>L2>L4>中林46杨>毛白杨。11、通过对ri和相对电导率进行Logistic方程拟合求出的LT50之间存在差异,EL法低于EIS法。12、通过对POD酶、SOD酶活性、MDA含量、可溶性蛋白质、可溶性糖、游离脯氨酸含量进行隶属函数分析,以经过隶属函数分析的结果为指标对各无性系进行抗寒排序:藏青杨>L4>E2>E4>中林46杨>毛白杨>L2。13、为了保证科学性,综合分析并结合各无性系在室外田间耐寒生长表现后,最终确定抗寒性顺序:藏青杨>E4>E2>L4>L2>中林46杨>毛白杨。