高铁轨道RCF电磁涡流检测电磁场仿真平台设计与实现

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:qinlufang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
《国家综合立体交通网规划纲要》指出到2035年将建成20万公里长的铁路干线,解决我国交通运输发展不平衡不充分问题。钢轨作为铁路的重要组成部分,由于恶劣的运行工况和制造缺陷,在列车往复碾压下将会产生伤损;钢轨伤损对人民生命物质安全有潜在威胁,有必要对钢轨伤损进行检测分析。调研发现,目前钢轨伤损的检测多采用仿真计算,电涡流无损检测的正向解析求解较少;钢轨动态巡检时,动静区域的网格划分是一个难题;无损检测方法理论知识过于深奥,不利于钢轨伤损检测的操作使用和推广应用。对此,本文基于.NET技术设计面向高铁钢轨接触疲劳裂纹的电磁涡流无损检测仿真评估平台,实现了电涡流无损检测技术对钢轨伤损正向解析求解和仿真求解;在动态和静态情形下,使用电涡流无损检测技术对钢轨伤损产生的磁场进行计算和显示;集成理论计算和简化数值建模过程,实现将该平台用于钢轨疲劳接触裂纹的检测方法研究中。本文的主要研究内容分为三部分:(1)钢轨伤损电涡流无损检测电磁场解析计算模块。分析钢轨伤损产生的机理,比较不同钢轨伤损缺陷模型的差异,求解得到不同钢轨伤损缺陷模型的解析表达式。利用Matlab数学软件将不同钢轨伤损缺陷模型的解析表达式编制成求解代码。在.NET框架下,联合C#可视化和Matlab数值计算能力强的优势,实现对不同钢轨伤损缺陷模型的可视化解析计算。(2)高速钢轨疲劳缺陷电涡流无损检测2D仿真模块。探究在直流激励下,动生涡流检测技术对产生的钢轨伤损涡流分布影响。使用参数化建模的方法对二维仿真钢轨伤损的动态区域和静态区域进行划分,降低对用户专业性的要求。录制并修改2D数值求解脚本,考虑人机交互和模块化设计的原则,分别设计了几何建模、材料设置、运动设置和网格划分等界面,实现参数化仿真2D钢轨伤损下的磁场分布。并利用该平台研究了磁感应强度变化和裂纹深度与宽度的识别情况。(3)高速钢轨疲劳缺陷电涡流无损检测3D仿真模块。钢轨伤损的二维模型无法还原实际工作中的3D钢轨模型,分析2D仿真和3D仿真的差异。采用数据库管理技术存储3D钢轨伤损仿真数据替代仿真求解过程,将求解数据按巡检速度和钢轨参数分表存储,解决3D仿真计算难度大,耗时长和数据存储和查询难等问题,对3D模型的仿真求解有重要的推广意义。
其他文献
异源遥感影像融合为了使影像信息的可用性最大化,将各自具有互补优势的数据进行整合,在医疗、遥感、计算机视觉和航天领域具有重要的实际价值。光学影像的优势在于它色彩丰富且空间分辨率很高,能清晰地观察到地物丰富的纹理细节信息,而SAR的优势是主动型雷达,24小时不受恶劣天气干扰,且具有一定的穿透性。而配准是影像融合的必要前提步骤,因此研究光学与SAR影像的配准与融合具有重要意义。目前光学和SAR影像随着遥
本文研究空间Rd(d≥2)中具有牛顿和库伦相互作用的布朗粒子系统的混沌传播间题,主要内容由三部分组成。第一部分考虑具有牛顿相互吸引作用的随机N-粒子系统。假设N个粒子的初始状态独立同分布,其共同的分布密度函数为po∈L∞(Rd)∩L1(Rd,(1+│x│)dx)。在截断系数为s~(lnN)-1/d的条件下,本文严格证明了:(a)光滑化粒子系统的混沌传播且相应的平均场极限方程为Keller-Sege
随着集成电路(integrated circuit,IC)行业的发展,自动测试设备(automatic test equipment,ATE)市场对集成电路测试仪的需求量越来越大。集成电路测试仪作为一种专业的测试仪器设备,其校准技术也亟待发展。集成电路测试仪的测试参数种类丰富,需要定期对其进行全面的校准,以保证各项参数的指标都能达到测试使用要求。本文设计的混合集成电路测试仪自动校准系统提供512个
信息技术与半导体工艺的日益发展,在提高装备性能的同时也使其自身复杂性不断增加。为保证装备维修性、可靠性、可用性以及战备完好性等指标,故障诊断测试也历经了由简单到先进、由外部到机内的发展阶段,可测性设计也成为装备设计初期需注重的关键环节。基于上述背景,本文对一种通信装备的机内测试技术进行研究与实现,设计了一种面向通信装备故障诊断测试的BIT(Built-In Test)硬件平台。主要研究内容如下:1
分子电子学是纳米电子领域的重要分支之一,其终极目标是利用单个分子或分子团簇构建功能化的电子元器件。随着微纳米尺度上的探测技术的进步,单分子尺度上的新物理效应都逐渐显现出来。在过去的十几年里,许多的研究都报道了在单分子结中的分子电导特性以及如何控制分子结中的电子传输,经典的中性分子体系,如饱和烷烃链分子和含有不饱和碳链的共轭分子都取得了不错的进展。然而,具有大偶极电子结构的分子体系中的电荷输运特性的
和自然原子相比,固体量子系统具有尺寸较大、耦合较强、容易大规模集成等优点。而混合固体量子系统能够利用各个系统的优点实现一些复杂的功能,可以设计成一些新型的量子相干器件。如微腔、超导量子比特和机械振子组成的混合系统中的电磁诱导透明现象可以用来设计单光子或者双光子开关;纳米机械振子与传输线振子同时和超导量子比特耦合可以做成量子传感器,利用量子比特调控机械振子和传输线振子之间的信息交换;而两个回音壁模式
有机发光二极管(OLED)和有机电致发光技术经过半个多世纪的发展逐渐成为主流的发光技术,因其响应快、功耗低、色彩鲜艳、对比度高、轻薄和可柔性等优势吸引研究人员投身研究。经过几代发光材料的发展,目前的研究重点逐渐转移到热辅助延迟荧光(TADF)材料上,而激基复合物(Exciplex)体系在实现延迟荧光发射的同时极大简化了材料的分子设计,是一种具有光明前景的材料体系。但是目前激基复合物OLED相关研究
本文研究的对象是切序列。它是具有最小复杂度的非周期序列,被数学家、物理学家、计算机科学家等长期而广泛的研究。切序列有很多等价的名称,例如:Strumian序列、rotation序列、Christottel词、Beatty序列、characteristic序列、balanced序列等等。本文讨论了三类典型的切序列的间隔序列性质。令ω为序列的一个因子,它在序列中出现无穷多次。ωp表示ω第p次出现,Gp
超快电子衍射(UED)是用于观测物质和材料超快结构变化过程的探针工具,在物理、化学、材料等学科前沿研究中发挥了重要的作用。Me V UED利用微波电子枪获得超短电子束团并从衍射样斑中获得样品结构演化的信息。相比于传统的静电高压加速的ke V UED,Me V UED具有电荷量更高、穿透能力更强等优势。本论文围绕Me V UED的系统优化问题进行了研究,设计搭建了Me V UED装置并开展了超快物理
随着金属-氧化物-半导体场效应晶体管(MOSFET)的特征尺寸逼近物理极限,功耗问题成为制约集成电路芯片性能提升的主要瓶颈。而半导体场效应晶体管功耗与器件的亚阈值摆幅密切相关。由于载流子分布受玻尔兹曼热力学定律的限制,传统场效应晶体管的亚阈值摆幅存在60 mV/dec的理论极限。引入铁电负电容可以放大栅极电压对沟道的控制作用,使晶体管器件突破这一理论极限值。由此,铁电负电容场效应晶体管成为发展低压