接触网几何参数振动补偿系统研究

来源 :西南交通大学 | 被引量 : 0次 | 上传用户:chenxiaoyi1988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
接触网几何关系是高速接触网的安全技术基础,精确测定接触网几何参数是高速弓网关系众多的难题之一。接触网检测车在动态检测的过程中会产生复杂的振动,对接触网静态几何参数的测定会产生不利的影响。因此,必须补偿因车体振动产生的垂直和水平方向的位移量,而对接触网几何参数检测造成的偏差。本文详细分析了接触网检测车的振动特性,给出不同振动形式下接触网检测几何参数补偿几何模型。结合检测车的振动特性把激光扫描系统引进车体振动位移测量,并确定了激光扫描系统的安装方案,既简化测量系统,又提高了可靠性,达到接触网检测精确测量接触网几何参数的目的。两套激光扫描系统安装在车底,在检测车运行中各自扫描相对应的钢轨,并实时把数据发送到振动补偿处理计算机。计算机对扫描数据滤波和提取处理得到车体相对于两个钢轨面的位移,进而通过几何关系计算得到补偿数据。最后由计算机把补偿数据发送到接触网几何参数检测计算机与几何参数合成,完成几何数据补偿。整个系统在检测过程实时测量车体振动位移,实时发送补偿数据。本文详细介绍了接触网检测车振动补偿的硬件搭建和安装,完成了实时检测软件方案设计及代码编写。经实际运行,证明了系统设计的合理性和可行性,达到了预期的效果。
其他文献
移动机器人进入未知环境时,不仅要根据已知的机器人位姿建立环境地图,获取环境的空间模型,而且需要根据已获得的环境地图,确定机器人新的位姿,称为同时定位与建图(Simultaneo
切换系统是一类重要的混杂系统,是指由一组连续或离散动态子系统组成,并按某种切换规则在各子系统间切换的动力系统。切换控制在很多实际系统中得到了应用,切换系统的研究具
随着网络技术和微机电系统技术的进步,以较低花费部署一组网络机器人于大范围内自动监测与收集数据是可行的。这些机器人以ad-hoc网络方式共享其感测信息,并通过协作与自适应
人脑是一个进行信息处理的复杂系统,不同脑网络间的协同工作与动态交互是支撑起人类高级认知功能的先决条件。为了更加准确深入地理解大脑的工作机理并探究各类脑疾病的病理
回转窑由于其可提供良好的混合性能和高效的传热能力,能适应于多种工业原料的烧结、焙烧、挥发、煅烧、离析等过程,因而被广泛地应用于水泥、冶金、纸浆、化工、环保等行业。
电力系统无功优化是保证系统安全、经济运行的一种有效手段,是降低网络有功损耗、提高电压质量的重要措施。因此,电力系统无功优化问题的研究,既有理论意义,又有实际应用价值。电力系统无功优化是一个多变量、多约束的混合非线性规划问题,其操作变量既有连续变量又有离散变量,其优化过程比较复杂。无功优化主要考虑在负荷给定的情况下,变压器分接头位置、无功补偿的容量和发电机机端电压大小的优化确定。在研究中以减少有功网
现场总线技术是一种先进的工业控制技术,它将分散在各个工业现场的智能仪表连为一体并与控制室中的监控器一起构成现场总线控制系统(Fieldbus Control System)。在现场总线控
脑—计算机接口(Brain Computer Intearfce,BCI)是在人脑和计算机或其它电子设备之间建立的一种直接信息交流和控制通道,是一种不依赖于常规大脑输出通路(外周神经和肌肉组织
Smith预估控制方法可以有效地对时滞进行补偿。但Smith预估控制依赖于被控对象精确的数学模型,模型误差会大大影响控制效果。改进的Smith预估控制方法无法从根本上改变对数学
半球谐振陀螺(Hemispherical Resonator Gyro),是一种极具发展前景的新型高精度陀螺,是航空和航天飞行器捷联惯导系统中最有前景的敏感器件,是未来高精度、长寿命陀螺的发展