论文部分内容阅读
克服信道噪声的不利影响一直是通信领域的重要研究内容,伴随着无线通信环境的日益复杂,如何增强淹没在背景噪声中的微弱信号及其特征成为当前研究的热点问题。目前大多数微弱信号特征提取技术主要是基于抑制噪声的理念,但目标特征不可避免地也会受到一定程度的抑制和破坏。随机共振能够利用非线性系统将噪声的部分能量转移到有用信号中,本课题将其应用到非合作通信信号处理领域,旨在实现更为有效的微弱信号增强和特征提取,主要工作和研究成果包括:1.针对双稳态随机共振无法有效处理多类微弱信号且系统参数较难选取的问题,提出基于奇异值分解的自适应参数调节随机共振方法。首先,从信号的特征子空间出发,利用奇异值分解构造出评价函数,并采用幅度归一化来进行单参数优化。同时,在随机共振处理模块中加入滑动平均滤波器解决了幅度漂移现象。最后,用于求解最佳系统参数的人工鱼群优化算法能够以较快的迭代速度收敛并实现和非线性系统的最佳匹配。2.针对传统调制识别技术的性能在信噪比降低时恶化的问题,提出基于参数调节随机共振的调制识别特征提取与增强方法。从幅度、相位、频率和小波变换共四类瞬时特征出发,深入探究了随机共振对共计7种特征参数带来的影响和作用,验证了随机共振系统的相位延迟效应不会对特征提取带来消极影响。最后利用BP神经网络对6种改善后的特征进行分类识别。仿真实验结果表明,参数调节随机共振能够将调制识别分类成功的信噪比门限大大降低。3.针对低信噪比MPSK和MQAM信号符号速率特征提取问题,提出了一种将随机共振与小波变换联合的方法。先利用自适应参数调节随机共振为含噪信号匹配最佳系统参数,之后利用Haar小波变换进一步提取突变信息,最后使用模块化思路设计出整体方法架构。该方法不仅弥补了单独使用随机共振效果不佳及其作为非线性系统易发散的缺点,还降低了小波最佳尺度难以确定的影响。仿真实验表明,该方法能够在一定程度上提高输出峰值,降低信噪比门限。4.针对OFDM信号中实际子载波数的特征提取问题,提出利用随机共振提升传统算法性能。首先,利用自适应参数调节随机共振算法对OFDM信号进行增强预处理,其次,分别采用倒谱法和小波改进倒谱法进行处理,最后,通过对信号的倒谱进行峰值检测从而确定子载波数。仿真结果表明,随机共振对于以上两种方法都能有较大程度的改进,提高了检测峰值,降低了信噪比门限,并增大了估计精度。