切换导航
文档转换
企业服务
Action
Another action
Something else here
Separated link
One more separated link
vip购买
不 限
期刊论文
硕博论文
会议论文
报 纸
英文论文
全文
主题
作者
摘要
关键词
搜索
您的位置
首页
学位论文
分形介质上的分数次扩散方程
分形介质上的分数次扩散方程
来源 :复旦大学 | 被引量 : 0次 | 上传用户:wuxing2000
【摘 要】
:
我们推导了一个外力场下的高维分数次扩散方程,用来描述分形介质上的传输现象.对于常数势和一般势的情形,我们给出了方程的解,并讨论了解的渐近行为.
【作 者】
:
邹富
【机 构】
:
复旦大学
【出 处】
:
复旦大学
【发表日期】
:
2004年期
【关键词】
:
扩散方程
Riemann-Liouville分数次导数
渐进行为
下载到本地 , 更方便阅读
下载此文
赞助VIP
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我们推导了一个外力场下的高维分数次扩散方程,用来描述分形介质上的传输现象.对于常数势和一般势的情形,我们给出了方程的解,并讨论了解的渐近行为.
其他文献
上协边类与丛空间
设M,N是光滑闭流形,p:M→ N为纤维丛投射.该文研究当Nm为RP(2)×RP(2)×RP(2)时,哪些上协边类具有代表元M使得M具有N上的纤维丛表示.另外,当n=19,21时,还决定了满足下述条件
学位
纤维丛
示性数
上协边类
Baskakov-Kantorovich算子导数的点态逼近性质
该文首先利用Baskakov-Kantorovich算子K(f,x)的导数引入新算子K(f,x):给出了这些新算子线性组合Kn,s(f,r,x)的点态逼近等价定理:利用上述结果证明了Baskakov-Kantorrovich算
学位
Baskakov-Kantorovich算子
线性组合
导数
光滑模
K-泛函
左-Bernstein-Durrmeyer拟插值算子的一致逼近
该文利用2r阶Ditzian-Totik光滑模ω(f,t)讨论了Left-Bernstein-Durrmeyer拟插值算子M(f)对空间L[0,1](1≤p≤+∞)中函数在度量Lp下逼近的正逆定理.主要结果如下:定理1设f∈L
学位
一致逼近
光滑模
K-泛函
左-Bernstein-Durrmeyer拟插值算子
正逆定理
一类非线性投影方程解的存在性及扰动迭代算法
众所周之,Hilbert空间中闭凸集上的变分不等式问题,可以转化为一个投影方程的求解问题.最近,Zhao和Sun引入并研究了一类非线性投影方程.该文的目的是讨论一类更广泛的非线性
学位
非线性投影方程
存在性
收敛性
扰动迭代算法
关于C<'n>中有界域上的逆紧全纯映射
本文主要研究Cn中有界域上逆紧全纯映射理论中的几个论题,涉及Bergman投射的边界正则性、逆紧全纯映射的边界行为、逆紧全纯映射的刚性理论以及分类等。全文共分四章.第一章概
学位
基于决策树的银行信用卡客户分类研究
随着信息网络技术的发展以及世界经济全球化的推动,银行传统经营模式和商业规则面临着巨大的挑战,而银行的中间业务大量兴起,银行的工作重心也面临着以资本为中心向以客户为中心
学位
银行信用卡
客户分类
决策树模型
数据挖掘
O-U过程驱动的随机动力系统的同步化现象
本文主要研究由Ornstein-Uhlenbeck(O-U)过程驱动的随机动力系统的同步化现象,它是对现有的高斯噪声和Lévy噪声驱动的随机动力系统同步化问题的推广.本文主要做了以下三个方
学位
扩散过程驱动
随机动力系统
同步化现象
均值回归
其他学术论文