【摘 要】
:
显著目标检测旨在利用智能机器设备模拟生物的视觉感知系统,从而能够从图片中找到显著的区域。显著目标检测早期以研究RGB图片为主,随着Kinect等捕捉设备的普及,借助于RGB-D图片中的深度信息来进行显著目标检测是该领域未来的主要发展方向。许多学者利用人工提取的RGB和深度信息计算得到低水平特征的方案虽已取得很大成绩,但随着卷积神经网络的广泛性和流行性,最近涌现出了大量基于深度网络的效果更好的显著目
论文部分内容阅读
显著目标检测旨在利用智能机器设备模拟生物的视觉感知系统,从而能够从图片中找到显著的区域。显著目标检测早期以研究RGB图片为主,随着Kinect等捕捉设备的普及,借助于RGB-D图片中的深度信息来进行显著目标检测是该领域未来的主要发展方向。许多学者利用人工提取的RGB和深度信息计算得到低水平特征的方案虽已取得很大成绩,但随着卷积神经网络的广泛性和流行性,最近涌现出了大量基于深度网络的效果更好的显著目标检测模型。本文在深度网络的基础上用RGB和RGB-D图片的两种思路展开研究。针对RGB显著目标检测问题,大多数基于深度网络的模型采用反卷积操作来恢复图片尺寸,这可能会丢失显著目标中的有效信息。因此,本文设计一个基于混合上采样模块和混合损失函数计算的显著目标检测模型。该模型的编码器与VGG-16中的编码器保持一致,其解码器用双线性插值的反卷积、不同空洞比例的卷积和特征通道拼接操作组成的混合上采样模块来代替反卷积,这不但增大感受野,而且增加空间信息。此外,采取交叉熵和面积损失函数的线性组合来保存显著图的边缘信息。本文在几个常用的数据集上均获得较好的效果。针对RGB-D显著目标检测问题,本文设计一个基于生成对抗网络(Generative Adversarial Network,简称GAN)的RGB-D显著目标检测模型。首先,该网络由生成器和判别器组成;其次,其中的生成器采用VGG-16为主干网络,并用不同空洞比例的卷积操作串联作为编码器中的第六大模块,采取由深入浅的方式融合信息生成初始显著图;接着,判别器与原始GAN中的判别器结构保持一致,并在其中增加自注意力模块,用来提升网络性能;最后,训练整个GAN,输出最终显著图。本文在几个常用的数据集上均获得较好的效果。
其他文献
论文从发展多功能的高性能器件对半导体材料性能多样性需求,以及半导体材料与金属电极接触势垒对器件性能限制的瓶颈出发,选择具有高电子迁移率的单层三磷化钙和单层三磷化铟
木论文面向工程陶瓷材料在各领域的应用需求,在氮化硅-六方氮化硼(Si3N4-hBN)复合陶瓷制备成型的基础上,设计并制备了氮化硅-六方氮化硼/钼(Si3N4-hBN/Mo)层状复合材料,对其
随着移动互联网的发展,选择网上购物的群体数量逐年增加,同时也产生了海量的评论文本,用户评论文本表达了顾客对购买商品的主观情感倾向。分析用户整体的情感倾向,以及针对不同方面的情感,可以帮助其他顾客更好的做出购买决策,也能够让商家了解用户喜好,改进产品并提高销量,因此具有重要的研究价值。然而很多文本没有天然的情感标签,如何利用机器学习或者深度学习解决标签数据不足这一问题,成为情感分析的一大难点。本文主
目前,脱除氮氧化物的技术应用最广泛效率最高的就是选择性催化还原技术,该技术尤为重要的是脱硝催化剂。本文制备出不同摩尔比的CeO2-WO3复合氧化物催化剂。研究铈钨催化剂上
随着我国高等教育的快速发展,高等教育资源短缺的问题也日益突出。高等教育事业的发展性与教育资源的有限性之间的矛盾日益显露出来,资源短缺及配置效率低下的问题,严重影响了我国高等教育可持续发展。从整体上来看,东部地区的高等教育资源配置条件要优于我国中西部地区,但在我国东部地区内部,各省市的配置效率是否都能达到较高的水平,配置情况是否都比较合理,将影响到整个东部地区高等教育的发展,进而对全国高等教育的可持
车牌识别是智慧城市中的一个重要技术,它广泛应用于智能交通管理的诸多领域。目前在一些特定场景下的车牌识别已经取得了较好的效果,但是针对拍照角度不固定,车辆位置不统一,图像光照不充足等自然环境下的车牌定位与识别效果依然不佳。深度学习对计算机视觉的发展产生了变革性的影响,目前效果最佳的目标检测与光学字符识别算法都是采用的深度学习。所以本文尝试基于深度学习技术,构建复杂自然环境下速度更快、精度更高、鲁棒性
高校思想政治理论课是高校思想政治工作的主渠道,是落实立德树人根本任务的关键课程。高校思想政治理论课的教学质量关系着高校培养担当民族复兴大任的时代新人、培养德智体美劳全面发展的社会主义建设者和接班人的质量。提升高校思想政治理论课教学质量,需要将增强高校思想政治理论课获得感摆在首位。增强高校思想政治理论课获得感的意义在于以增强大学生“获得”的主观感受为导向,更好地进行高校思想政治理论课建设。具体而言,
随着科学技术的进步,人们产生的图像信息随之激增。如何从海量的资源数据中快速挖掘出为人们所利用的信息,成为研究者密切关注的问题。对于这个问题的不断探索促进了计算机视觉的快速发展。图像显著性目标检测是计算机视觉研究的子领域,作为其预处理过程旨在对要处理的图像自动地检测和分割出人类感兴趣的区域。本文针对如何提高图像显著性目标检测性能的问题,提出了基于加权k近邻和深层指导的图像显著性目标检测算法。本文的具
实际工程中存在大量含有随机因素的复杂系统,如化工过程、多机器人系统等。以随机非线性多智能体系统作为研究对象具有典型的意义,该系统中各智能体的动态特性均含随机特性,此类问题是多智能体系统控制理论体系的重要组成部分。本文采用伊藤(It?)引理、反步法的设计方法、动态面控制技术、图论知识和径向基函数(Radial Basis Function,RBF)神经网络逼近理论研究随机多智能体系统协同控制问题,主
移动设备普及与互联网快速发展给人们生活带来了极大的便利,互联网用户通过移动设备可以很便捷地在各式各样的网站或手机App上阅读新闻资讯,观看影视节目,学习知识与购物。然而,随着网络的日益增长,从中找出自己感兴趣的内容会变得更加耗时与枯燥。因此,推荐算法越来越受到重视,成为学术界与产业界的研究热点。协同过滤算法是现阶段研究推荐技术中比较主流的方法。该种算法旨在分析用户与产品的历史信息,提取其隐含特性,