论文部分内容阅读
中国煤炭储量巨大,远超石油和天然气。在可预见的未来,煤炭依然是中国重要的能源和化工原料,煤气化技术是煤炭清洁高效转化的龙头技术,发展煤气化技术对于中国能源安全具有重要的战略意义,同时也是高碳燃料低碳转型发展的重要途径。流化床煤气化技术应用前景广泛,且由于煤种适应性强、操作温度适中等优点受到广泛关注。但在流化床气化过程中,煤中的硫、氮会释放至气相,形成气相含硫、氮的污染物,这些气相硫、氮污染物不仅会造成下游设备腐蚀、催化剂失活、环境污染等一系列问题,而且限制了煤气的应用领域、增加了制气成本。此外,由于缺乏合适的调控手段,当上游煤种更换时,下游煤气净化系统难以完全与之匹配,未能充分发挥流化床气化煤种适应性强的技术优势。基于此,本文利用不同尺度的试验平台研究了气化过程中硫、氮的迁移规律,并在工业循环流化床气化炉上开展了试验,采集了实际运行数据加以验证。首先,在热重质谱联用仪上进行多种半焦的气化试验,探究了气化过程中硫、氮的释放规律。随后,在小型鼓泡流化床上研究了反应氛围、温度、氧碳比和蒸汽碳比等参数对煤气化过程中硫、氮迁移规律的影响,同时研究了多个参数对石灰石固硫效果的影响。接着,在循环流化床小试试验平台上研究了温度和操作参数的耦合影响,掌握了流化床气化过程中硫、氮的迁移规律。最后在工业循环流化床气化炉上进行试验并采集数据进行分析,验证了所得规律的准确性。在热重质谱联用仪上,利用半焦和石墨开展了 CO2气化试验,探究了不同气体组分的释放温度区间。试验结果表明:SO2是主要的气相含硫污染物,HCN是主要的气相含氮污染物。HCN的释放温度区间与失重温度区间紧密相关,但NH3、NO、NO2基本没有生成。H2S析出温度与H2的峰值释放温度相近,COS的析出温度区间与CO的相近,COS的形成与CO有关,H2S主要来自于分解的硫与氢原子的结合,SO2主要来源于稳定的有机硫和硫酸盐的分解。硫的释放的主要受到气化反应的影响。通过不同组分释放温度区间的关联,进一步探索了气化过程中硫的释放路径,高温下分解的硫有一部分会与煤气中的CO或H2结合形成COS或H2S释放至气相,而另一部分硫则会与周围的半焦重新结合,形成热稳定性更好的有机硫,从而固留在固相中。当温度进一步升高,碳基本消耗完全,有机硫大量分解,并以SO2的形式释放至气相中。在小型鼓泡流化床上进行了煤气化试验,研究了不同参数对硫、氮迁移规律的影响。结果表明,在小型鼓泡流化床煤气化过程中,主要的气相硫是H2S,其次是COS,仅有少量的硫以SO2和CS2的形式释放出来。相较于热重-质谱联用试验,鼓泡流化床气化过程中CO/H2的浓度更高,且气固接触时间更长,促进了H2S和COS的生成。同时,氮基本没有释放,导致NH3和HCN并未能检测到。不同反应氛围下,空气气化过程中硫的释放率最高;而在蒸汽气化过程中,气相硫中H2S的比例(H2S/Sg)最高。富氧水蒸气气化过程中,随着温度、氧碳比和蒸汽碳比升高,碳转化率和硫释放率增大。气相硫中H2S的比例与温度和蒸汽碳比的变化趋势一致,与氧碳比的变化趋势相反。硫释放率的变化趋势与碳转化率的变化趋势一致。气化过程结束时,H2S和COS的转化反应远未达到平衡,且COS的产率过剩,H2产率提高会促使COS转化为H2S。同一工况下,底渣和飞灰中硫、氮形态的分布类似,飞灰中基本不存在黄铁矿,而且随着碳转化率增大,有机硫的含量下降;氮的迁移也类似,随着碳转化率的增大,热稳定性较好的N-6,其含量增大。在流化床气化过程中,硫的释放不仅与碳转化率密切相关,还与煤中硫的赋存形态相关。石灰石加入后,在蒸汽碳比相同时,H2产率提高有利于促进石灰石固硫,蒸汽碳比改变时,石灰石的固硫效果存在最佳值。在循环流化床小试试验平台上进行了煤气化试验,研究了温度和操作参数耦合的影响,进一步完善硫、氮的迁移规律。试验结果表明:循环流化床气化过程中,气相硫产率:H2S>COS>CS2。气相含氮污染物主要以NH3的形式存在,而HCN的产率极低。相较于小型鼓泡流化床,循环流化床的气固混合更为剧烈,半焦分布更均匀,SO2更容易被半焦还原,同时也增大了半焦与H2的接触,促进了 NH3的生成。结合小型鼓泡流化床的试验结果,在流化床气化过程中,H2S和COS的转化反应未达到平衡时,氢气产率最高的点也就是H2S/COS最高的点。在研究范围内,石灰石加入后,氧碳比的增大促进了气相硫脱除率的提升,而蒸汽碳比的增大则降低了气相硫的脱除率。固相硫的迁移规律与鼓泡流化床气化过程中的基本一致。至于氮,NH3的产率随氧碳比的增大而减小,同时随蒸汽碳比的增大而增大;而石灰石的加入对NH3的影响不大。碳转化率和固相硫、氮形态的分布均会影响硫、氮释放。在工业循环流化床上进行了煤气化试验,结果表明:随着蒸汽碳比的升高,碳转化率和硫释放率都增加,主要的气相硫为H2S和COS。随蒸汽碳比的升高,H2产率增大,H2S和COS的转化反应更接近平衡,增大了 H2S/Sg。主要的含氮污染物为NH3,且随着蒸汽碳比的升高,氨氮的产率增大。