自适应3D多物体追踪

来源 :浙江大学 | 被引量 : 0次 | 上传用户:zjzjzj13
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
3D多物体追踪是计算机视觉中重要的问题,并且在许多重要场景比如无人驾驶、机器人等中得到了广泛的应用,因此其受到了极大的关注。然而目前大部分的工作通过提出越来越复杂的神经网络不断提高追踪的精度,但却忽略了系统的计算复杂度使得这些算法很难在实时性的系统比如自动驾驶上运用。因此,本文基于点云的数据特征提出一个简单且有效的实时追踪算法,能够基于点云的检测特点自适应调整,根据物体的类型自适应调整模型参数,最大程度上减少检测的噪声。本文采用的为基于点云的物体检测的追踪框架,使用一个现成的3D物体检测算法生成物体检测框,运用自适应的相似度计算和匈牙利匹配算法来做数据关联,采用自适应卡尔曼滤波来预测状态。本文在公开的kitti数据集上进行实验,实验结果表明本文提出的自适应3D多物体追踪算法在多个评估指标上都超过了基准模型并且在运行速度上远远超越了其他模型。本文的算法目前已经在实际的无人驾驶环境中运行测试,证明了其高效性以及精确性。
其他文献
摘 要:预算管理审计是对企业预算管理情况的监督和评价,与企业预算管理相辅相成,两者的有机结合有助于保证企业战略目标的有效实现。文章以寿险公司为例,阐述了寿险公司开展预算管理审计的必要性、预算管理审计的主要内容、预算管理审计的组织实施以及预算管理审计的结果运用。  关键词:预算管理审计 主要内容 组织实施 结果运用  中图分类号:F239.6  文献标识码:A  文章编号:1004-4914(201
期刊
高分辨率对地观测系统重大专项启动以来,已陆续为国土资源勘察,环保环境监测,农业作物监测,地震灾害监测等多个行业部门应用提供了重要的支持。但是目前高分辨率数据服务的大众应用和产业化发展仍处于滞后阶段,需要结合当前Web服务技术建设具备系统协调和服务开放能力的服务平台,以网格服务的形式带动和支撑高分应用的产业化发展,支撑高分服务开放和快速共享,培育高分服务应用生态链。当前Web服务技术逐渐成熟,微服务架构模式日新月异,但是仍缺少满足高分辨率产业化需求的系统性架构。
  论文结合服务集成、服务组合和服务演
近些年来,随着物联网设备的增多,单一的中心服务器很难有效的管理大量的边缘设施和终端设备,传统的中心化管理方式出现瓶颈,边沿计算的需求逐渐增强,大量的基础设施,如存储、计算、网络等资源,逐步向终端设备上迁移。但和中心化的管理方式相比,分布式设备的安全防护能力较低,容易受到黑客攻击,且去中心化的物联网集群对设备缺乏控制权,一旦群组内存在恶意设备,则会影响整个群组的作业能力。为了解决这个问题,本文将区块链技术引入到去中心化的群组作业场景中,提出并设计了一套基于区块链的物联网群组作业系统,以提升集群作业的安全性。
摘 要:区域经济合作在当今的世界经济舞台上变得越来越重要。文章在探讨东盟自由贸易区与欧盟的历史背景基础上,从股东和利益相关参与者的角度来分析欧盟和东盟自由贸易区的战略目标及其社会经济服务功能,然后比较两个合作组织之间的相同和不同点。最后,文章展望欧盟与东盟自由贸易区的政治、经济、文化等多方面进一步合作的前景  关键词:欧盟 东盟自由贸易区 区域经济合作  中图分类号:F061.5 文献标识码:A 
期刊
时间的推移、需求的不断变更和技术人员的不断更替导致应用系统的结构变得愈加复杂,将原本的单体应用拆分成分布式应用已经成为了必然趋势,事务也随之从单体事务变成了分布式事务。然而分布式事务会带来数据不一致的问题,所以研究出一个能够保证数据最终一致性的框架就显得迫在眉睫。目前开源的一些分布式事务一致性框架大多是采用中心协调者的方式。中心协调者需要控制所有分支事务的提交和回滚工作,具有严重的单点问题和堵塞问题,它的性能和可靠性直接影响到了整个业务应用的性能和可靠性,一旦中心协调者出现故障,就会使得整个业务应用无法正
摘 要:跨越中等收入陷阱的根本在于完成产业由资本密集型重化工业向技术(知识)密集型产业升级。东部地区产业向技术(知识)密集型产业升级和中西部地区承接东部的产业转移。通过完成产业结构转移和产业升级来构建国家价值链。国家价值链可通过实现经济持续增长,促进区域协调发展,形成“橄榄型”社会和缓解城市病来促进中国跨越中等收入陷阱。  关键词:中等收入陷阱 国家价值链 产业升级  中图分类号:F061.3 文
期刊
将虚拟物体自然的融合到真实照片中是计算机图形学的重要研究方向之一,传统方法通常需要用户手动标注照片中的场景几何与光源位置,在恢复出3D场景和光源的情况下进行重新渲染。巨大的交互量与重新渲染的计算量限制了该技术在实时任务下的应用。
  本文结合深度学习技术与预计算技术,以降低交互量和提升融合速度为目标,提出了一种全自动虚实景融合算法,在开阔平面场景下,仅需单张照片,便可在特定视点下将合成物体放到平面上,整体流程无需任何手动标注与重新渲染过程,并可在30毫秒内完成融合。
  本文算法以3阶球谐函数
随着近些年来人工智能的发展,智能移动机器人作为人工智能算法落地的载体也得到了人们的广泛关注,其作为一种复杂的机电设备,需要多种模块、算法和技术的有机融合才能真正发挥其替代劳动力的作用,然而现有智能移动机器人开发平台的局限性使得开发一个安全、实时、鲁棒的智能移动机器人应用存在着诸多困难。
  一方面,对于机器人硬件平台,一般由计算平台、控制执行平台和传感器平台组成,其中计算平台作为控制命令的分发单元以及传感数据的处理单元,虽然目前的通用处理器在性能方面有很大的提升,但单个性能强大的处理器仍然难以满足智
视觉定位是计算机视觉领域中的重要研究课题,它在自动驾驶、移动机器人和增强现实等领域中有着非常广泛的应用。近年来,随着这些领域的快速发展,关于视觉定位的研究取得很多突破,但针对大规模场景的视觉定位还面临着效率和鲁棒性两方面的挑战。一方面,随着场景规模变大,算法的计算时间和内存消耗将会变得无法接受,尤其在计算性能受限的移动设备上表现的更为严重。另一方面,在大规模场景中不可避免地存在重复结构和重复纹理的问题,这严重地降低了局部特征的判别性从而影响视觉定位的鲁棒性。因此,在大规模场景中实现高效和鲁棒的视觉定位是一
近些年来,互联网应用的内容传播与表现形式越来越多样化,面对多模态信息融合载体的推荐需求,需要机器学习模型从多种维度、综合利用多种技术对多模态内容进行足够细致的分析理解。特征组合是点击率预估任务中的重要问题,基于深度神经网络的点击率预估模型利用显式的特征组合结构,同时捕捉高阶和低阶的特征组合,从而取得了优异的效果。但是这些模型只关注于对原始类别特征进行组合,没有同时考虑组合特征表达的完整性以及组合特征的重要度。认为在多模态特征的推荐场景下,完整的特征表达和有效的特征利用对模型的影响更加明显。
  首先