Multi-ontology Concept Matching Algorithm to Discover Semantic Web Service

来源 :大连海事大学 | 被引量 : 0次 | 上传用户:jovkin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Web Services discovery is the most important task in the Web Services model to get thebest benefit out of this technology. Researchers have developed keyword based UDDIdiscovery systems to provide similar Web Service against Web Service providers. But searchstrategy relying on keyword match makes it difficult for people to get useful information andcreates problem of incomplete and incorrect search results. A feasible method to improve theWeb Service discovery technology is to add Semantic Annotation to Web Service. The ratio of precision and recall is greatly improved by adding semantic tags to Web Service. The function of analysis and understanding is imparted to the retrieval system. As the natural language can be parsed easily by computer, the disposal about request and result represent the character of intelligent, so the web can completes the task automatically to a great extent. WSDL-S can be derived by annotating existing WSDL document and can be disposed bycomputer automatically so finally the goal of semantic search on Web can be achieved. Therehas been some Semantic Web Service framework proposed but very little research were doneto face the challenge of discovering Web Service in multiple ontological environment whichis more likely to be faced in the world of Semantic Web Services as different culture, businessand individual may have their own understanding of ontological concept of anything. This paper discusses the multiple ontological concepts and how to measure similarity between them. This paper highlights the improvement on existing, proposed multi-ontology discovery solution (Oundhakars) to eliminate mismatches and to increase accuracy by using syntactic,properties, domain, measuring sub-concept or super-concept and neighborhood similarity matching between two ontologies. A comparison of the improved match methods is presentedin this thesis and future work is also outlined for interested researchers.
其他文献
随着计算机网络技术的发展和我国信息化进程的不断推进,计算机网络在人们的日常工作中发挥着越来越重要的作用。目前,大部分的企业或机关单位都组建了内部的局域网,实现了资源共
随着SOA应用的不断深入,大规模服务管理及Web服务自动化处理的重要性不断增加,而当前SOA体系的基础设施已经难以满足这些新的需求,构建新的SOA体系的基础设施已经成为越来越
随着计算机技术的迅速发展,计算机游戏逐渐成为人们最重要的娱乐方式之一和IT行业中最重要的利润增长点。如何在计算机游戏中模拟人类智能,增加游戏的娱乐性和互动性,已经开始受
分类是数据挖掘的一个重要课题。随着数据规模与维数的增加,建立高效的、适用于大型数据集的分类算法已成为数据挖掘的一项挑战性任务。基于显现模式(Emerging Patterns,EP)
在以Gnutella和KaZaA为代表的无结构P2P文件共享系统中,由于文件的流行度呈现不均衡分布,使得现在通常采用的洪泛查询机制的效率较低。已有的针对文件流行度判定机制的研究着重
手语是聋人进行交流的主要方式,是一种通过双手的手形和运动来表达信息的形式化语言。手语识别研究不仅可以增进聋人与健听人之间的无障碍交流,还可以提高计算机对人体语言的理
随着网络在蒙古地区的迅速普及,互联网已经成为蒙古族人民信息传递的主要媒介。然而,网络信息聚集,导致信息严重过载。因此,如何从成千上万的蒙古文网站中获取有价值的内容,
The modeling business processes still remains the responsibility of ITpersonnel. This has produced a gap between business process modelingtechnology and busi
随着网络技术的飞速发展,我们的生活,学习,工作和娱乐与网络联系得越来越紧密。我们充分享受网络带给我们的方便的同时,各种各样的病毒,木马等恶意软件也在网络上大肆流行。这些恶
针对现有模型对P2P流量分类准确率较低的问题,本文提出一种基于深度学习结构、半监督的深度置信网络(Deep Belief Networks, DBN)的流量分类方法,构造P2P流量合适的特征空间,