一类Cahn-Hilliard方程的Fourier谱方法

来源 :吉林大学 | 被引量 : 0次 | 上传用户:ohngahng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
非线性抛物方程在实际领域中应用广泛,可用于描述地下水渗流、大气流动、受控约束核聚变等系统中各物理量的扩散过程,如质量扩散、能量传输等.对这些实际物理过程的数值模拟是当今科学与工程计算的前沿研究领域之一,其中对非典型抛物方程离散方法的研究一直是具有挑战性的课题.本文主要讨论一类Cahn-Hilliard方程:其中文中给出了这类Cahn-Hilliard方程的背景介绍和相关理论知识.首先,由方程的变分形式导出半离散格式,并通过分析得到了半离散解的H0模、H1模和H2模稳定性;接着引入正交投影算子并分解误差,再分别对各个非线性项进行分析处理,从而得到了半离散解的误差估计;最后,构造了半隐的全离散格式,得到了线性化的方程,分析了全离散解的H0模、H1模的先验估计,并给出了其误差估计.
其他文献
近年来,在光纤通信系统中常利用光孤子传输信息,在新一代的通信技术中发挥着巨大作用,因为光孤子传输信息具有远距离,大容量传输的优势.非线性薛定谔方程(Schr?dinger)可以用
为了更加深入的了解微观粒子的运动情况,量子散射作为一门独立的学科进行更系统更深入的研究,其中作为最为基础的(e,2e)反应被广泛应用于各式各类的实验和研究中,激光场辅助
随着科学技术的不断进步和产品功能的多样化进展,人们对系统可靠性有了更深入的理解。产品的组成元件在失效过程中表现出的特征不再是简单的两状态而是多状态,多状态系统的可
设c(p,q)是一个定义在R2上仅与p,q有关的函数,本文的主要目的就是要找到一个p,q关系式使下述不等式对于任意的x∈(0,π/2)恒成立:并由此得到一些关于三角函数的新的Cusa-Yang-
由V. V. Sergeichuk引入的线性矩阵问题,是矩阵问题的一种优美的表达方式.一般来讲,矩阵问题是研究在一定相似变换下的某些矩阵的集合的相似问题.而其中的重要问题之一便是发
本文主要考虑具有周期边值问题的二阶非线性微分方程系统的正周期解的存在性,所考虑系统中的非线性部分在一个方程中是次线性,在另一个方程中是超线性的.通过构建C[0,1]中两
伪随机序列由于其具有平衡性、长周期、低相关性、较大的线性复杂度等良好的随机特性,在码分多址(CDMA)通信系统、流密码系统、雷达、编码等领域有广泛应用.利用分圆理论构造
Hochschild上同调理论是由Hochschild引入,由Cartan和Eilenberg发展并逐步完善的一个同调代数分支,在代数的表示理论中扮演着十分重要的角色。有限维代数的Hochschild上同调
近年来,由于在物理,化学和工程等学科的广泛应用,分数阶微分方程越来越受重视.学习分数阶微分方程的兴趣在于分数阶的模型比整数阶模型更为精确.更进一步,因为模型中存在记忆
本文研究的是含梯度项的拟线性Cauchy问题的解的渐近行为,其中p>m>1,0≤uo∈ L∞(Rn), b∈C0,1(0,+∞))满足且当-n<κ≤+∞时,我们证明了上述Cauchy问题的Fujita I晦界指标为并