基于强化学习的高速公路施工区可变限速控制方法

来源 :东南大学 | 被引量 : 0次 | 上传用户:reddhong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在工程实践中,高速公路的改扩建工程通常采用不中断交通流的建设方式,这种施工方式会对施工区的交通安全和交通流运行带来影响。传统限速控制方法对于施工区交通流难以实现前置的自适应变化,无法提前阻止拥堵产生,具有一定滞后性,影响了施工区道路的实际通行效率。为此,本文提出了一种基于强化学习的可变限速控制方法以消除或缓解施工区交通拥堵问题。基于高速公路施工区的定义、布局及施工形式,研究高速公路施工区的车辆运行特性。根据所采集的交通流数据,应用数据驱动的方法,分析施工区的速度变化特性、流量与密度关系变化;根据分析结果探究高速公路施工区瓶颈路段的形成机理,为施工区交通流模型与可变限速控制方法的建立提供依据。应用交通流元胞传输建模理论,考虑“通行能力突变”的交通流现象与可变限速控制影响机理,对交通流基本图进行改进,建立基于元胞传输模型的高速公路施工区交通流模型,并对该模型进行参数标定与检验,为建立施工区新的可变限速控制方法提供分析与评价依据。在可变限速控制作用机理和强化学习方法的分析基础上,结合高速公路施工区的交通流特性,应用Q学习算法,建立施工区新的可变限速控制方法。以可变限速值取值集合为动作空间;以上游交通需求流量、可变限速控制路段和瓶颈路段的交通密度集合为状态空间;限速周期内施工区的车辆通过数为奖赏函数;以策略为动作选择策略,形成基于强化学习的高速公路施工区可变限速控制方法,并设计相应的实施流程。新方法不仅考虑施工区上游交通需求,而且整合施工限速控制路段和瓶颈路段的关键密度值,再结合Q学习的迭代机制,使得限速优化值更有效提高车辆的通行效率。以京沪高速改扩建的施工工程为应用背景,应用MATLAB软件,编制相应的仿真程序,描述所建立的施工区交通流元胞传输模型和提出的基于Q学习的可变限速控制方法,并对无控制、基于反馈控制的传统可变限速控制方法、本文所提出的可变限速控制方法进行仿真实验。仿真结果表明,在同样的交通需求下,新的可变限速控制方法相比无控制与传统限速控制方法分别可以提高施工区通行效率24.5%和9.9%,减少拥堵时间42.1%和11.5%,有明显优化效果,这一结果证明了本文提出的可变限速控制方法在改善施工区交通运行状况与提高施工区通行效率方面的有效性。
其他文献
近年来,人工智能在全球迎来了新一轮的研究热潮,在传统的机器学习算法之外,一种名为深度学习的技术被提出,其核心是模仿生物神经系统构建的神经网络,这种层层递进的模型结构由于其出色的特征提取与数据拟合能力,被广泛应用于各种人工智能产品中,如今常见的人脸检测、机器翻译、语音识别等应用都基于深度学习技术实现。深度学习应用的执行阶段包括模型训练和任务推断两个核心环节,模型训练是利用特定数据集修正神经网络参数值
矩阵变压器已被证明是提高数据中心电源效率的有效方案。然而在高频下产生的寄生参数、交流电阻等将影响矩阵变压器的效率及工作性能。因此研究高频下矩阵变压器的寄生参数、损耗分布及集成化等具有重要意义。本文基于半桥串并联谐振变换器(LLC型),提出了一种高效率高功率密度的矩阵变压器的设计方法和具体实现方式,对矩阵变压器寄生参数、损耗以及磁集成等关键问题进行了分析。主要工作如下:(1)建立了矩阵变压器寄生参数
随着集成电路的不断发展与进步,反激准谐振变换器由于其成本低、体积小、功率密度高,可以实现开关管零电流关断(Zero Current Switching,ZCS)与准零电压导通(Quasi-Zero Voltage Switching,Quasi-ZVS)等优点,具有广阔的发展前景。而目前反激准谐振变换器存在控制模式单一等问题,限制了其全负载范围内平均效率的提升。针对上述问题,本文设计了一种高频反激
反激准谐振变换器安全性高,稳定性好,在手机适配器等中小功率电源领域拥有广泛的应用前景。反激准谐振变换器简化了拓扑结构,通过谐振实现谷底导通,提高开关频率。同时,采用同步整流技术可以降低整流二极管的功耗,提高整体效率。然而由于反激准谐振变换器的工作波形谐振变化导致难以有效找到采样控制点,这阻碍了同步整流技术在反激准谐振变换器上的应用。针对上述问题,本文设计了一种反激准谐振变换器的同步整流控制策略。首
可编程逻辑控制器(PLC)是一种被广泛应用于工业控制领域的嵌入式设备。它常被用于实现安全攸关系统的控制逻辑,例如核电、交通、医疗设备等。这些系统对软件的正确性、可靠性有着极高的要求。而目前PLC程序开发主要依赖于个人经验,需求描述错误、程序设计错误难以避免。SPS4PLC来源于规格说明模式语言SPS,是一个专用于描述PLC控制系统的规格说明模式语言,它能够以接近自然语言的方式精确描述PLC控制系统
多线程编程和异步事件处理的支持使得安卓应用的执行行为具有不确定性。若两个未经正确同步的事件对某一共享内存单元的访问可并发执行,且其中至少一个事件为写访问,则产生数据竞争。数据竞争是一种常见的并发缺陷,可导致安卓应用运行异常、崩溃、数据无效更新等严重后果。现有的安卓应用数据竞争探测技术一般采用动态或者静态探测方法,存在静态探测误报率高,动态探测代码覆盖率低、漏报率高等问题。为提高安卓应用数据竞争探测
背景:脑卒中是对人类威胁最大的脑血管疾病,也是世界上第二大死亡原因。尽早建立再灌注会导致氧化损伤,炎症反应以及随后的兴奋毒性细胞死亡。多巴胺自聚合衍生而成的聚多巴胺纳米颗粒(Polydopamine nanoparticles,PDA)具有优异的自由基清除能力,引起了广泛关注。本研究旨在探讨PDA是否可以在脑缺血再灌注损伤中发挥其神经保护作用。方法:采用大脑中动脉闭塞(Middle cerebra
随着生态环境的变化,全球范围内尤其是中国的癌症发生率一直持续上升,癌症是一种复杂疾病又称为多基因病。随着测序技术的发展,使人们对各种类型的基因组的了解也越来越深入,大量研究表明,复杂疾病的发生与通路发生功能性障碍有关。确定疾病相关的通路可以帮助研究人员更好的认识疾病,治疗疾病。本文主要从以下两个方面进行了复杂疾病与通路的相关性研究,以便更好地发现与疾病相关性更加密切的代谢通路。首先,在疾病相关通路
社会生产力的不断提高离不开制造业的蓬勃发展,切削刀具等的硬质保护涂层对于提高其切削性能,延长其使用寿命,降低使用成本,提高工作效率很有意义。通过形成周期性共格c-Al N/c-TMN超晶格结构,Al N/Ti N纳米多层涂层能获得超越其单组分力学性能、抗氧化性能、耐磨损性能简单加和的优异性能,很适合用于切削刀具等的硬质保护涂层。然而,c-Al N是一种介稳相,在厚度过大或者外界温度过高时,会转变为
研究背景:随着纳米技术不断发展,纳米材料的应用也逐渐增加。纳米ZnO颗粒具有特殊的物理化学特性,因此在食品和化妆品等领域均有应用。纳米ZnO颗粒进入机体后,能够通过血脑屏障,并进入大脑,因此纳米颗粒的暴露,可能导致神经系统炎症,甚至引起神经退行性疾病。炎症小体被认为与多种炎症性疾病有关,其中包括神经退行性疾病。现阶段纳米ZnO颗粒引起炎症小体激活的相关研究相对较少。因此,探索纳米ZnO颗粒对炎症小