一种混合架构的高可靠性深度神经网络加速器

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:lbfjm78
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度学习的巨大成功激发了深度学习在众多应用程序领域中的应用。为了获得更高的性能和能效,研究人员越来越多地在定制的深度学习加速器(Deep Learning Accelerator,DLA)上实现卷积神经网络(Convolutional Neural Networks,CNN)模型。但模型执行的可靠性很大程度上取决于底层的加速器。同时,用不断缩小的半导体技术制造的DLA与以前相比,更容易遭受制造缺陷,并对诸如温度变化之类的工作条件更加敏感。深度学习加速器的常规2D计算阵列上的硬件故障可能会导致严重的预测精度损失。先前的工作提出了添加同质的行、列或对角线的处理单元(Processing Element,PE)以减轻故障PE的问题,但是每个冗余PE只能用于有限的区域(例如行和列)。这会导致,当任何区域中有故障的PE的数量超过该区域的冗余PE的数量时,它们将无法恢复计算阵列。当故障注入概率增加并且故障分布不均匀时,失配问题会更加恶化。为了解决该问题,本文提出了一种用于容错DLA的混合计算体系结构(Hybrid Computing Architecture,Hy CA)。与以前的将PE的同质冗余行或列添加到2D计算阵列的现有工作不同,它具有一组点乘处理单元(Dot-Production Processing Unit,DPPU),DPPU能够并行计算每个输出特征,而不会拖延2D计算阵列的计算,因此本文可以将阵列中所有故障PE的输出特征映射到DPPU上重新计算。当DPPU计算能力大于故障PE计算要求时,可以恢复神经网络执行,而不会造成任何性能损失或精度损失。根据本文的实验,与传统的冗余方法相比,Hy CA显示出更高的可靠性、可扩展性和性能,且芯片面积损失更少。此外,通过利用灵活的重新计算功能,Hy CA还可以用于扫描整个2D计算阵列并在运行时有效地检测出故障PE。
其他文献
近年来,随着人们公共安防意识的提高,智能监控系统在安防领域中发挥着越来越重要的作用,系统中关键的行人再识别技术也备受关注。该技术的核心思想是对出现在跨摄像头中特定的行人进行身份匹配。将该技术应用在实际场景下面临着一些挑战,一方面由于光照条件的影响,跨模态行人再识别利用近红外摄像机拍摄出不同模态下的行人图片,另一方面由于在实际场景下摄像头会拍摄出大量没有标签的行人图片。基于这两个实际场景,如何提取不
网络技术的快速发展为当代社会的人们提供了更加便捷和优质的生活。然而,随着网络规模的日益增大,网络的管理和维护任务也变得日趋复杂。传统网络架构在当前的网络发展形势下正面临着前所未有的挑战,如相对封闭、管理不灵活和过于复杂等。作为一种新型网络架构,软件定义网络(Software Defined Networks,SDN)则顺应了网络发展的需求,专注于解决传统网络架构的痛点。SDN将控制面与数据面分离,
屏蔽泵因其无泄漏、噪声低的显著优势,被广泛应用于化工、军工、航天等领域。为更好地满足屏蔽泵的智能化发展,本课题围绕实际需求,设计了基于屏蔽泵的多传感器融合物联网远程在线监测平台,主要功能涵盖屏蔽泵状态的远程在线监测、报警和控制,实现多参量、全过程的实时信息采集,引入多传感器信息融合技术,全面监控屏蔽泵的运行状态。主要研究内容如下:(1)从屏蔽泵常见故障出发,分析平台功能性和非功能性需求,探讨平台架
医学超声成像由于其无痛苦、无创伤和无辐射等特点,被广泛应用于人体组织检查。在医学超声成像方式中,传统聚焦成像由于只采用了发射定点聚焦,使获得的图像只在焦点附近处有较好的分辨率。合成孔径成像能实现统一较好的分辨率,但由于发射功率低,对于高衰减高噪声的成像区域,成像结果有着很低的信噪比。平面波成像采用所有阵元并行发射的方式提高了发射功率,且实现了极高的成像帧率,但平面波成像没有采用发射聚焦,因此图像的
超声成像设备是现代医疗影像学检查设备中最常见的设备之一,因其具有操作简单、实时成像等特点,超声成像检查被广泛的应用到疾病的检查与诊断中。随着现代医学的应用和发展,不同的临床领域对超声成像设备的数量需求与性能要求都有着很大程度的提升。因此,国内外越来越多的科研人员在不断地探索超声成像技术,改善超声成像质量,进而提高超声成像设备的整体性能。同时,随着超声成像设备投入临床使用后,对设备定期做质量控制与评
对电子邮件文本进行过滤与分析能够有效的协助人们了解过去发生的重要事件信息与人员交互行为,电子邮件数据集中丰富的文本、图像和附件信息也具备巨大的挖掘潜力。现有的大多数电子邮件可视化研究主要是通过展示邮件主题与时间关系、邮件可视化元素设计或者是可视化邮件社交网络来进行相关分析。其中对于邮件数据集的主题筛选与聚类方法较为简单,同时对于邮件事件序列信息的提取效果也不够显著,大量分析价值较低的邮件也会给人们
为了提高网络性能、保障数据安全,通常需要以服务功能链的形式对服务请求进行严格的规划和有序的执行。网络功能虚拟化(NFV)技术的出现,使得网络服务与硬件设备脱钩,实现了服务功能链的动态部署。NFV技术极大地改变了网络服务供应商向用户提供服务的方式,NFV在提高网络管理灵活性的同时,也降低了网络资本成本(CAPEX)和运营成本(OPEX)。实现NFV技术的一个关键问题是如何有效地编排和部署虚拟网络功能
单像素成像(Single-pixel imaging,SPI)是利用一种通过光电探测器来检测一组由目标场景调制的结构化照明图案的反射总光强度来重构目标场景的一种计算成像技术,为可见光波段成像、高光谱成像和太赫兹成像提供了一种成本低、高信噪比的选择。然而,耗时的成像步骤阻碍了单像素成像技术的发展。重构图像的像素分辨率越大,所需要的照明图案数量就越多。使用同样的投影装置,需要越多的照明图案投射到目标物
混凝土材料因其具有抗压强度高、可塑性好等优点,成为了土木工程领域中应用最为广泛的建筑材料,研究混凝土材料的各方面性能对于土木工程领域来说有着重要的意义。另一方面,人工智能在土木工程中的应用越来越广泛,视觉分析作为人工智能的重要组成部分,由于其有高效的适应性和经济性,在混凝土材料或结构分析中受到了广泛的关注。本文将在微米、毫米和厘米三种尺度上,利用深度学习算法识别混凝土材料中的细观组分,分析钢筋混凝
/sup>
会议