论文部分内容阅读
α-Al2O3薄膜高温硬度高,摩擦系数低,化学稳定性好,具有优异的介电性能和抗氚渗透性能,在机加工业、微电子和防渗透层领域有着广泛的应用前景。目前在工业生产中制备α-Al2O3薄膜可用化学气相沉积法在1000℃以上的高温下实现,所沉积的薄膜晶粒粗大,界面存在较多孔洞,且脆性较大;过高的沉积温度不仅极大地限制了基体的选择,而且薄膜与基体间的结合力较差,严重影响了α-Al2O3薄膜在实际应用中的性能表现。由于氧化铝的同质多晶特性,简单地降低沉积温度会导致薄膜中亚稳相或非晶相的形成,只有热稳定的α-Al2O3薄膜才能充分发挥其优越的综合性能。因此,实现α-Al2O3薄膜的低温沉积一直是众多学者的研究目标。考虑到反应溅射过程中出现的靶中毒现象,本文均采用沉积过程更为稳定的射频磁控溅射技术制备氧化铝薄膜。550℃时溅射Al和α-Al2O3靶在α-Al2O3片基体上沉积的薄膜均只含α相,证明同质基体能抑制γ相的形成。550℃时在Si(100)基体上反应溅射Al靶沉积的薄膜含有α-Al2O3、γ-Al2O3及非晶相;同样的基体温度下溅射α-Al2O3靶沉积的薄膜仅含有α-Al2O3和非晶相,推测是从α-Al2O3靶溅射出的α-Al2O3簇团形成α晶核所致。在450℃550℃溅射α-Al2O3靶沉积的氧化铝薄膜中均只检测到α-Al2O3,但都含有一定量的非晶相。随着基体温度的升高,非晶相含量减小,α-Al2O3含量增大,薄膜的力学性能提高,电阻率逐渐增大,而介电常数逐渐减小。为探究基体表面预埋α-Al2O3籽晶对氧化铝薄膜形成的影响,先用α-Al2O3粉末与乙醇混合制成不同浓度的悬浊液,再将粉末悬浊液滴在基体上,待乙醇自然蒸发后氧化铝粉末即铺展在基体表面成为α-Al2O3籽晶。随后用反应射频磁控溅射Al靶在500℃600℃的温度范围内沉积氧化铝薄膜。经检测后发现,提高氧化铝粉末悬浊液浓度能增大基体表面α-Al2O3籽晶的分布密度,进而增强其促进α-Al2O3形成及抑制γ相形核的作用,降低单相α-Al2O3薄膜所需的沉积温度。基于溅射α-Al2O3靶及基体表面预埋α-Al2O3籽晶对氧化铝薄膜形成的影响,利用与α-Al2O3具有相同结构的α-Cr2O3来促进低温下α-Al2O3的异质外延生长制备Al-Cr-O薄膜。本文采用Al100-xCrx(x=10,20,30)合金靶在500℃600℃的温度范围内沉积富Al的Al-Cr-O薄膜。随着合金靶材中Cr含量逐渐升高,薄膜中α-Cr2O3含量相应升高,增强了对α-Al2O3形成的促进作用,降低了形成单相α型Al-Cr-O薄膜所需的沉积温度。薄膜的力学性能随着薄膜中α-Cr2O3含量的增加而提高。在550℃时反应溅射Al70Cr30合金靶可得到单相α-(Al,Cr)2O3固溶体薄膜,其纳米硬度可达28.3 GPa,介电常数为8.9。依据溅射α-Al2O3靶产物中含有α相晶核的推测,自制Al/α-Al2O3复合靶(α-Al2O3含量15 wt%)。通过反应射频磁控溅射Al/α-Al2O3复合靶,在450℃550℃的温度范围内沉积氧化铝薄膜。随着基体温度的升高,薄膜中γ相及非晶相的含量逐渐降低,α-Al2O3的含量显著提高,因此薄膜的力学性能得到提高,电阻率随之增大,而其介电常数有一定程度的降低。在550℃时可得到单相的α-Al2O3纳米晶薄膜,其纳米硬度达到23.8 GPa,与烧结氧化铝陶瓷的硬度相近,介电常数为7.6。