二氧化钛基高效复合纳米光催化剂的改性制备及其应用研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:mingliqq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
TiO2光催化剂具有催化活性高、化学性质稳定、经济易得、安全无毒等优点,是目前公认的最佳光催化材料。可以被广泛应用于有机气体污染物降解、废水处理、光解水产氢、表面自洁净等领域,属于液固、气固相反应的范畴。但由于TiO2半导体材料存在光生电子-空穴复合率高,禁带宽度大的缺陷等问题,而未得到广泛的应用。为此,本研究针对 TiO2光催化材料在自清洁、气相、液相污染物降解和光解水出氢应用中存在的问题,利用特殊晶面调控、GR负载、SrTiO3异质结等方式设计制备了三种 TiO2基高效纳米复合材料,以提高其在各自应用中的光催化活性。并利用 XRD、SEM、UV-vis、电化学性能测试等一系列表征手段,分析材料的晶面结构、表面形貌和光学性能等,探究材料的合成和光催化工作机理,为TiO2基高效复合材料的设计构建和应用研究提供基础。
  首先,利用对向靶磁控溅射法,通过对溅射压强的调节,在{001}SrTiO3基底上异质外延生长{001}晶面取向生长的单层 TiO2纳米薄膜。通过 XRD、SEM等一系列表征分析得知,随着溅射压强的增大,{001}TiO2纳米晶先按照原子层状生长模式后按照岛状模型生长。在溅射压强为1.5 Pa时制备的{001}TiO2/{001}SrTiO3异质外延薄膜具备优异的光电化学性能和亲水性。这归因于优异异质结的形成能够有效抑制光生电子-空穴对复合,且{001}晶面具有强氧化性,能够形成较多的表面自由基。
  其次,本研究利用锐钛矿相 TiO2强氧化性的特性,采用简易水热法,通过添加氧化石墨(GO)以及 HF 酸,得到{001}TiO2/GR 纳米复合材料。通过一系列表征分析方法,研究了GO和HF添加量对TiO2晶体形貌、{001}晶面暴露比例和光学性能的影响机理。并在GO添加量为18 mg,HF酸为3 mL时,制备出高活性的{001}TiO2/GR纳米复合材料,30 min内对VOCs气相污染物的降解效率高达70%,明显高于商业P25。光催化活性得到提高的工作机理为:GR碳材料的负载能够增强光吸收,有效增大吸附表面积,抑制电子-空穴对的复合。HF酸的添加可以促进强氧化性的{001}高能晶面的生长,并且与低表面能的{101}晶面形成晶面结抑制光生载流子的复合。
  再次,研究利用板钛矿相TiO2的还原性明显优于锐钛矿相和金红石相TiO2。通过添加NaBH4和GO, 利用简易水热法合成Ti3+-(211)TiO2(B)/GR纳米复合材料。因(211)晶面具备较强的还原性,GR的负载,以及Ti3+自掺杂可以引入中间能级降低TiO2的禁带宽度,有效抑制光生电子-空穴复合。因此,材料显示良好的光水解出氢的能力,是同条件下制备纯板钛矿样品的2倍。
其他文献
由于锂硫电池拥有非常高的比容量和理论能量密度(约1675 mAh g-1和2600 Wh kg-1),并且活性物质硫还具有能量密度大、原材料储量丰富、成本低和环境友好等优点,因此成为比商业化锂离子电池(LIB)更有前景的高能量密度系统之一。然而,锂硫电池的正极侧也存在着硫的导电性差、放电时活性物质的体积膨胀大、可溶性多硫锂化物(LiPSs,Li2Sn:3
学位
大力发展新能源汽车是解决全球能源危机和遏制环境恶化的有效途径。直流充电系统为新能源汽车的发展提供了重要基础支撑,是实现新能源汽车产业化和推广普及的关键条件,对新能源汽车产业发展具有重大影响。三电平PWM整流器是实现电网和负载之间能量转换的重要电力电子变换器,具有成本低、效率高、功率密度高等优势,其良好的运行特性能够提高设备性能,改善电能质量,在直流充电、风力发电、轨道交通等领域得到了广泛的应用。 
近年来锂离子电池在电动汽车的需求驱动下快速发展,正如诺贝尔化学奖得主吉野彰所言:“锂离子电池将在新能源革命中发挥核心作用。”据权威新能源调研机构SNEResearch报告:2020年全球车用动力电池装机量高达137GWh,同比增长17%,预计未来五年全球销量年均复合增长率超过15%,到2025年将超过650GWh。然而,快速发展的背后存在诸多关键科学问题悬而未决,尤其是锂离子电池高效利用与安全管理
学位
学位
学位
基于近红外光谱的无创血糖检测目前面临的主要难题之一是测量过程中背景变动,如光源漂移、出汗以及人机接口处的位置变化、温度变化、压力变化等对光谱测量的影响。基于位置的差分测量方法被认为是具有临床应用前景的方法之一,在被测部位的附近找到同时受这些背景变动影响的浮动基准位置,通过对同一时刻不同位置的光谱进行差分处理来削弱或消除同源且同步发生的背景变动带来的干扰。论文总结了课题组关于浮动基准测量方法的研究进
锂离子电池以高能量密度、长循环寿命以及良好安全性等优点在便携式电子设备中广泛使用,未来还有望大规模用于电动汽车等其他储能设备中,而设计和开发高性能的电极材料是推动其发展的重要途径。本文基于电极材料钛酸锌锂(Li2ZnTi3O8)应用于锂离子电池的瓶颈问题,对其展开了改性研究,以提高其导电性和高倍率性能,为高功率动力锂离子电池负极材料提供更多的选择。  首先,以 Li2CO3、TiO2和 Zn(CH
微电子器件、航空航天、生物仿生材料等领域的未来发展对材料提出了轻质、柔韧、高强度、高定向疏导等要求。各向异性材料包括垂直面与水平面间的各向异性材料、水平面内的各向异性材料等,在很多特殊的应用领域,面内各向异性的材料具有更优异的性能。面内各向异性材料具有单轴特异性,可以提高单轴传导能力,在取向方向上的强度、模量、拉伸性能、准一维导电性能等明显提高。但是目前制备各向异性材料存在着取向困难,填料易团聚等
学位
随着现代化工业的迅猛发展,环境污染已成为全世界面临的最严峻问题之一。半导体光催化对降解有机污染物有着潜在的应用价值,受到人们的广泛关注。铁铝尖晶石(FeAl2O4)作为一种尖晶石型半导体材料,具有优良的光电性质,低廉的成本,良好的化学稳定性和耐热性,以及环境友好等优点,是降解环境污染物的理想候选材料,但是目前合成过程受到诸多限制,影响其应用范围。本论文采用简单、快速的溶液燃烧合成法制备出FeAl2
利用预处理技术对污泥进行破解,是改善污泥厌氧消化性能的有效途径。本文采用超声和碱解的方法对高固污泥进行厌氧消化预处理,研究了单独超声、单独碱解和超声耦合碱解对污泥的破解及对厌氧消化的促进作用,采用超声碱解耦合工艺进行生产性试验,并分析高固污泥厌氧消化池中微生物群落结构特征,主要研究成果如下:  开发出一种新型、高效、低能耗的密集多探头槽式超声波反应器,反应器体积为250L,总功率为10kW,污泥处
学位