论文部分内容阅读
在量子通信的过程中,携带信息的量子比特不可避免的会被外部环境所影响,这会影响量子态的相干性,从而引起信息的错误。为了避免量子信息在量子通信的过程中受到量子噪声以及量子消相干的影响,量子纠错码的出现就显得尤为重要了。量子纠错码的常用构造方法是基于经典纠错码及其对偶码来构造。由于代数曲线上的码拥有良好的渐进特性,故而本文将利用代数曲线来构造量子纠错码。对于单点代数几何码来说,其对偶码依然是第一类代数几何码,但是这一特性对于两点代数几何码就不成立了,需要另外计算其对偶码的参数。本文具体研究内容如下:1.提出了基于Hermitian曲线上两点码构造对称的量子纠错码的方法。首先通过利用Hermitian曲线的Weierstrass半群分析其Riemann-Roch空间结构的方法,确定了经典Hermitian两点码及其对偶码的构造方法及其性能参数。然后利用CSS构造法构造了相应的量子Hermitian两点码,给出了其性能参数的计算方法,并通过举例进行了参数的计算验证。最后将量子Hermitian两点码与对应单点码进行比较后,验证了量子Hermitian两点码确实比量子Hermitian单点码有着更好的性能。2.提出了基于Suzuki曲线上两点码构造对称的量子纠错码的方法。首先通过利用Suzuki曲线的Weierstrass半群分析其Riemann-Roch空间结构的方法,确定了经典Suzuki两点码及其对偶码的构造方法及其性能参数。然后利用CSS构造法构造了相应的量子Suzuki两点码,给出了其性能参数的计算方法,并通过举例进行了参数的计算验证。最后将量子Suzuki两点码与对应单点码进行比较后,验证了量子Suzuki两点码确实比量子Suzuki单点码有着更好的性能。3.提出了基于Hermitian曲线和Suzuki曲线上两点码构造非对称的量子纠错码的方法。利用非对称CSS构造法构造了相应的量子纠错码。然后对所构造的非对称量子码进行仿真分析,仿真结果表明,当改变非对称值时,所构造的非对称量子纠错码的性能会随着非对称值的增大而变好。