双层CuS/细菌纤维素太阳能蒸发器在海水淡化中的应用研究

来源 :东华大学 | 被引量 : 0次 | 上传用户:tanhuanghehuanggua
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
工业化和现代化进程持续推进,淡水资源急剧减少,海水淡化是缓解这一问题的最有效方法之一。传统海水淡化方式,膜工艺和热工艺,需要消耗大量的化石燃料,容易对环境造成巨大的危害。因此,太阳能驱动界面海水淡化成为解决水资源短缺最有前景的方式之一。其中,由于双层界面太阳能蒸发器优异的热集中能力,海水蒸发速率和效率得到显著的提高,是目前最有效的界面蒸发结构。本文利用半导体材料硫化铜(CuS)纳米粒子的低成本,低毒性和高光热转换性能力和细菌纤维素(BC)优异的水传输能力,构建了双层太阳能蒸发系统,并研究了其相关性能,主要工作内容如下:通过原位合成制备了CuS/BC复合凝胶膜作为光热转换层,并使用BC包裹聚乙烯泡沫作为水传输和隔热层搭建了双层太阳能蒸发系统。该系统在全光谱范围内可实现近100%的光吸收,在一个太阳照射下,最佳蒸发速率可达到1.79 kg m-2 h-1,蒸发效率达到98.5%。经过40次循环蒸发测试,蒸发速率保持稳定,显示了制备的CuS/BC复合凝胶膜优异的可循环使用性。同时,该双层蒸发器经过12 h的持续蒸发后,表面不会出现结晶盐,蒸发速率在前8 h没有发生明显的下降。此外,复合光热膜的柔韧性、可定制性和便携性也增加了它们在便携式太阳能驱动海水淡化的实用价值。通过真空抽滤制备了CuS/BC复合膜作为光热转换层,并使用溶解再生的BC泡沫作水传输和隔热层制备了双层BC生物泡沫蒸发器。该蒸发器在全光谱范围内可实现99.6%的光吸收,一个太阳照射下,最佳蒸发速率可达1.44 kg m-2 h-1,蒸发效率达到83.5%。经过20次循环蒸发和8 h长期照射,蒸发速率保持稳定,显示了双层蒸发器的可循环使用性和长期稳定性。同时,该蒸发器还显现出超过6周的长久稳定自漂浮能力,以及120 min内清洁2 g结晶盐的优异自清洁能力。并且,该蒸发器还显现出杰出的光催化降解性能,对亚甲基蓝溶液(10 mg L-1)展现出93.4%的降解效率。此太阳能蒸发器的轻量性和稳定性也预示了其未来在海水及印染废水净化上的应用潜力。
其他文献
准确测量单向碳纤维/环氧树脂层压复合材料的内部应变场对于复合材料的设计和应用具有重大价值。在实际应用中,复合材料面临着复杂的外界环境,如温度的剧变,这会使得结构件内部产生热应力,发生热膨胀或者热翘曲等现象。一旦监测到材料的应变超过安全阈值,即可进行预警,保障复合材料的尺寸稳定性和服役过程中的健康安全。光纤Bragg光栅(FBG)具有尺寸小,灵敏度高,易集成等特点,可用于材料微小应变的实时原位测量。
铝合金因其强度高、密度低等特点,被广泛应用于航空制造业。由于高强度的铝合金难以焊接的特性,工业上常用铆接进行连接。而搅拌摩擦焊则能够有效解决铝合金难以焊接的问题,然而焊缝性能常弱于母材,需对焊缝进行强化处理。激光冲击是一种利用激光力学效应对材料进行强化的技术,本文以铝合金搅拌摩擦焊缝为研究对象,通过模拟仿真研究铝合金搅拌摩擦焊缝在激光冲击后残余应力场的分布、应力波的传递规律以及激光参数对应力场的影
随着生物医疗水平的提高,给药形式不再仅限于胶囊、片剂、液体给药和静脉注射,减少更多药物辅料的摄入和在指定位置释放是提高给药效率和生物利用度的方式。对于一些可经口腔黏膜吸收和须快速起效的药物,可采用口腔速溶膜剂(ODF)的新型给药方式,其优点在于能适用于不服用大量水、具有吞咽困难无法主动服药的情况,并减少胃肠道的首过效应,经口腔黏膜吸收快速进入血液循环,发挥药物作用。对于一些需要作用于肠道的肠溶性药
太阳能是一种绿色、安全、通用的可再生能源,具有广谱、大面积的特点。目前,太阳能的利用主要包括光电转换、光化学转换和光热转换。其中,光热转换已经广泛地应用于光热发电、光热储能和太阳能海水淡化等领域。特别是在海水淡化领域,由于利用太阳能而无须消耗其他类能源,该技术受到了高度重视。太阳能海水淡化技术的核心是开发出光热材料。目前,人们已开发出多种光热材料(例如金纳米颗粒、石墨烯和碳纳米管),并成功用于高效
随着复合材料的不断发展及应用范围的不断扩大,人们对复合材料的要求已不满足于高力学性能,发展轻量化、耐高温及多功能化的先进复合材料已然成为一种趋势。芳纶纤维是具有优异力学性能和耐热性能的低密度高性能纤维,聚酰亚胺是耐高温性能优异的高性能树脂,三维间隔复合材料具有高比强度和高比模量,独特的中空结构使其具有优异的隔热性能与吸声性能。本课题使用芳纶纤维为增强体、聚酰亚胺为基体,结合三维机织间隔结构制备出具
三维机织间隔复合材料以集成化、轻量化的结构得到越来越广泛的应用。其高中空度的独特结构赋予了三维机织间隔复合材料低重量、高强度、隔热、抗冲击、抗分层、介电性能稳定等优异性能。然而三维机织间隔复合材料介电常数理论的空缺限制了它在航空航天和通讯领域的应用。尽管已有学者对复合材料的介电常数理论进行过研究并提出相应的理论模型,但是三维机织间隔复合材料结构特殊,已有的理论模型对其并不适用。本文基于平行板电容器
汽车工业发展迅速,为经济的崛起和人民生活水平的提高创造了有利条件,但同时也带来一系列噪音污染问题。汽车噪音轻则导致驾驶员心情烦躁,引起头疼,注意力难以集中,重则引发交通事故。为了降低汽车噪音污染,人们使用玻璃纤维、芳纶等化学纤维来生产吸声复合材料,这些复合材料力学性能优越,但也存在耗能大、回收降解困难、生产成本高的缺点。与芳纶、玻璃纤维等化学纤维相比,麻纤维力学性能略差,但吸声性能较好,并且还具有
柔性智能电子设备飞速发展的同时也引起了人们对可持续能源搜集方式和供应技术的不断地探索。柔性热电材料是一种可以将热能转换成电能的环境友好型功能材料,利用这种材料制备的柔性热电器件(TEG)具有质量轻、尺寸小并且可穿戴等优点,可以直接利用人体和环境之间的温差实现持续性供电,在可穿戴电子领域具有广阔的应用前景。目前柔性热电材料的性能还不能完全满足应用要求,仍处于不断探索发展的阶段。柔性热电材料的制备多采
节约能源,实现绿色发展是当今科技与社会发展的必然要求。复合材料,特别是纤维增强树脂基复合材料作为一类轻质高强、可设计性强的新型材料,目前被广泛地应用于汽车、航空、船舶等重要制造领域,成为推动绿色发展的极大助力。薄壁件作为一种典型的吸能耐撞结构,常被用来制作吸能缓冲元件,在上述应用领域中被大量需求。传统的吸能缓冲元件通常以低碳钢、铝合金等材料制作,该类材料制作的结构在碰撞时可以通过产生稳定可控的弹塑
以聚醚醚酮(Poly ether ether Ketone,PEEK)为代表的聚芳醚酮(poly ether ketone ketone,PAEK)类热塑性高分子树脂,因其优异的综合性能,已被用作高性能纤维增强复合材料的树脂基体,所制备的高性能热塑性复合材料具有优异的抗冲击性能等优点,被广泛应用于航空航天等领域。众所周知,复合材料的性能受加工工艺的影响较大,对于高性能热塑性复合材料而言,其工艺难度