论文部分内容阅读
前置后驱车作为市面上一种常见车型,其发动机、离合器、变速器、传动轴、后桥、轮胎构成一个动力传动系统。车辆行驶过程中,发动机输出扭矩的波动会激发动力传动系统的扭转模态,产生扭振,并通过中间支承、后桥、悬架、轮胎等传递路径,产生耦合效应作用于车身,进而引起车内振动噪声等NVH问题。本文针对某公司MPV后驱车型后桥振动噪音问题,对传动系与后桥主减齿轮系统耦合振动机理进行理论研究,建立了考虑中间支承的传动系扭振当量模型以及引入时变啮合刚度、齿侧间隙等非线性因素的准双曲面齿轮动态啮合模型,将传动系扭振模型与后桥齿轮-转子-轴承模型进行耦合,并使用MATLAB进行数值求解,计算传动系扭振及主减齿轮系统的动态响应。在此基础上,研究了主减齿轮的齿侧间隙、啮合刚度、主动齿轮轴承跨距等参数对耦合系统动态特性的影响,并进行扫频特性分析,计算得到理论模型扭振响应峰值1600rpm,对应二阶扭转频率53.3Hz。为了验证理论模型的正确性,建立了基于ADAMS的传动系刚柔耦合虚拟样机模型,模拟发动机二阶激励下传动系统的扭转振动响应,得到传动系关键部位扭转角加速度响应幅值,并进行扫频分析,发现在1700rpm附近(对应二阶扭转频率56.7Hz)出现明显峰值,与理论计算结果基本吻合。为了进一步验证耦合机理与仿真分析的正确性,探究实际传动系扭振与主减齿轮系统耦合振动的特性,建立了动力传动系统电机台架,使用电机模拟发动机二阶波动扭矩激励,对不同幅值的波动扭矩进行扫频试验。试验结果表明,传动系统存在55.7Hz的扭振模态,其扭转振动特性曲线与理论计算及仿真结果基本一致,后桥处测点的振动响应量级与齿轮振动响应理论计算结果基本吻合。理论、仿真与试验结果的对比验证了该耦合振动机理与仿真模型的正确性,为进一步优化系统参数,提高整车NVH性能提供理论依据与仿真参考。