退火温度及铝掺杂浓度对铟锌氧纳米纤维场效应晶体管电学性能的调控

来源 :青岛大学 | 被引量 : 0次 | 上传用户:coldbee
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
一维金属氧化物半导体材料(如氧化锌、氧化铟等)在新一代电子器件领域引起了大量的研究关注。在这些材料中,In2O3由于具有较高的载流子迁移率,大面积均匀性以及电稳定性常被用于场效应晶体管沟道层中。但是,其自身产生的大量氧空位使In2O3具有较高的关态电流,导致其开关电流比较小,开启电压较负以及亚阈值摆幅较大,因此In2O3不适用于制备大规模电子器件。Zn元素可以减少In2O3中氧空位的数量从而降低In2O3的载流子浓度,但是由于Zn原子固有的低温快速生长的特性,In Zn O晶粒在高温退火时过度生长导致纳米纤维产生断裂的现象,从而严重影响电子的传输,造成电学性能的退化。针对以上问题,本论文重点开展了以下研究内容,并取得了一定的实验结果:1.将溶液法和静电纺丝技术相结合,制备了In Al Zn O纳米纤维场效应晶体管。通过对In Zn O纳米纤维掺杂少量的Al元素,进一步抑制了其载流子浓度,降低关态电流的同时维持了较高的开态电流,获得了较高的开关电流比。同时,在600°C下退火时,In Zn O纳米纤维断裂的现象得到了有效地改善,得到的In Al Zn O纳米纤维光滑且均一,有利于电子的有效传输。我们研究发现Al的掺杂浓度为0.9%时所制成的In Al Zn O纳米纤维场效应晶体管具有优异的电学性能:开关电流比~107,迁移率为10 cm2V-1s-1,阈值电压为1 V。除此之外,我们使用具有高介电常数的Al Ox代替传统的Si O2作为介电层,在维持良好的电学性能的同时成功地将操作电压降低了~10倍。2.在本项工作中,我们通过燃烧合成法及静电纺丝技术在低退火温度下制备了高性能的In Zn O纳米纤维场效应晶体管,在400 oC退火的In Zn O纳米纤维场效应晶体管具有~106的优异开关电流比,接近于0 V的阈值电压,以及令人满意的载流子迁移率(0.47 cm2V-1s-1)。该结果不仅显示了In Zn O纳米纤维场效应晶体管在新一代透明电子器件中的巨大潜力,也为低温制备电子器件提供了可靠的实验参数和技术支持。
其他文献
在最近几年中便携式和可穿戴无线设备的飞速发展和第五代(5G)技术的普及,智能电子手表、智能手环和智能眼镜等小型电子设备越来越受人们的欢迎,但不可避免的是由于设备朝着小型化的趋势和电池使用过程的中的损耗,设备电源的更换变的越来越麻烦。摩擦电纳米发电机(TENG)作为一种高效环保的蓝色能源,为小型电子设备供电提供了一种全新的方式。在本文中我们介绍了耐酸碱的TENG和栅极结构TENG在安全方面的应用。随
由于集成电子技术的能耗问题和集成度问题,研究新型的信息传输方式具有广泛的应用前景。自旋波是通过电子自旋编码传输信息,故而能够克服热功耗的问题,因此研究自旋波的激发和调控具有重要的意义。本文以磁交换作用对磁性薄膜自旋波的影响为研究课题,分别通过在单层薄膜中掺入非金属元素和双层铁磁耦合的方式改变薄膜的交换作用,研究其中的自旋波共振。首先采用成分梯度溅射法制备了一系列不同B含量和厚度不同的FeCoB薄膜
科技与工业的快速发展给人们带来了巨大的舒适和生活便利的同时也造成了严重的环境问题,在各种环境问题中,废水污染以及与细微颗粒物(PM)相关的空气污染已成为最严重的问题。纤维膜作为一种过滤材料,在空气过滤和废水处理等领域得到了众多应用和发展。静电纺丝工艺作为一种简单而高效,能够直接、连续制备聚合物纳米纤维的方法而受到众多研究者的青睐。首先我们研究了一种可以规模化制备聚合物纳米纤维用于气体过滤的静电纺丝
磁电材料因为同时表现出铁电性和铁磁性使其成为具有广阔前景的材料之一,这种独特的铁电与铁磁之间的耦合,能够应用在许多电子设备和器件中。随着各类电子器件向小型化和智能化的趋势发展,尤其是可穿戴设备中对柔性器件的需求,各种柔性磁电材料在最近几年备受关注。由于单相磁电材料的磁电效应往往比较微弱,人们把研究重点转向复合磁电材料。在众多柔性复合磁电材料中,聚合物基复合磁电材料因为其出色的柔韧性、良好的稳定性和
一维金属氧化物半导体纳米纤维(nanofibers,NFs)由于其特殊的化学和物理性质已经被广泛用于光电探测、化学和气体传感、显示器件等领域。在一维金属氧化物半导体NFs材料中,SnO2具有大的比表面积、较宽的带隙等优点,被广泛用于光电以及气体传感等领域,然而目前SnO2场效应晶体管(field effect transistor,FET)仍然存在着阈值电压过负、能量消耗较高等亟待解决的问题。针对
光致发光材料已应用在科学工程中的多个领域,例如:光学存储,生物标记,发光二极管,医学和各类光学传感器等。在这些应用领域中,纳米尺寸的静电纺丝荧光纤维是理想且常用的材料。随着人们生活水平的逐渐提高,对静电纺丝荧光纳米纤维的性能和应用有了更高的要求,尤其是在医疗和有毒物质检测方面。因此在本文中,设计了两种新型静电纺丝荧光纳米或使用方法,用于解决传统抗癌和水中有机染料检测中的弊端。我们首先设计了一种抗癌
近年来,传统的冯·诺依曼架构因其在处理器与存储器之间巨大的速度差而面临着处理爆炸性增长数据的严峻挑战,Mead提出的模拟生物大脑的神经元模拟则很有希望解决这一困境,忆阻器因其阻值可以由流经其的电荷精确调制这一与生物突触较为相似的特点,使其为解决冯·诺依曼瓶颈和研究神经元模拟提供了一个理想的平台,这使得围绕忆阻器的研究成为当今一大热点,然而大多数忆阻器方面的工作主要研究了器件材料的搭配选择和忆阻性能
高性能锂硫(Li-S)电池作为下一代储能系统最有前途的候选电池之一,越来越受到人们的关注。然而,硫和硫化锂(Li2S)的绝缘性,硫正极充放电过程中巨大的体积变化,以及多硫化锂(Li PSs)的穿梭效应和缓慢的转化反应动力学等问题导致Li-S电池硫利用率低,电化学性能差,严重阻碍了Li-S电池的商用化发展进程。二硫化钴(Co S2)已被证明可以与Li PSs产生较强的化学键合作用进而在表面有效地捕获
铁电隧道结因具有高集成度、高读写速度、低读写功耗和非破坏性读出等优点引起了人们的极大关注,被视为下一代非易失性存储器的有力竞争者。然而与其他类型的非易失性存储器相比,对于铁电隧道结非易失性存储可靠性的研究始终不多,其电阻保持失效机制和阻变翻转疲劳机制尚不明确。因此,本文以Pt/BaTiO3/Nb:SrTiO3铁电隧道结为研究对象,对其非易失性存储可靠性做了以下研究:首先,以四个原胞厚度的SrTiO
激光诱导击穿光谱(Laser induced breakdown spectroscopy,LIBS)技术是一种发射光谱分析方法。该方法的原理是通过使用纳秒级强激光脉冲聚焦到样品表面并击穿产生等离子体,收集等离子体冷却时的辐射光谱进行分析,以完成对于元素成分定性和定量的检测。LIBS的主要检测对象是金属元素,其快速原位、微损以及多元素同时检测等优势使得LIBS技术越来越受到各领域研究者的关注。然而