可降解铼基纳米颗粒的制备及光热性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:vitor330
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
癌症已成为威胁人类生命健康的一大重要因素。目前对于癌症的临床治疗手段主要为手术治疗、化疗和放疗三种方法。但传统方法存在手术风险大,毒副作用多,治疗过程较为痛苦等缺点。光热治疗作为一种新型癌症治疗技术,是借助光热转化材料在病症局部通过将光能转化为热能从而快速升温达到杀伤癌细胞目的一种方法,具有定点消融、操作简便的等优点。已有大量关于光热治疗纳米材料的研究,然而常受人们关注的如金、银、钯等光热转换材料存在不可降解、制备过程复杂等缺点,这些材料真正应用于生物体时,或因在体内的长期滞留而给人体带来毒副作用。针对多数光热纳米材料生物不可降解的问题,本课题制备了具有高光热转化效率及可降解的金属铼基纳米制剂用于光热治疗中。采用简单的化学还原法,在液相环境中成功制备了铼纳米颗粒(Re NCs),平均粒径在30 nm左右。吸收光谱是光热纳米材料重要光学性能评价标准之一,通过改变合成参数,从而影响其吸收光谱表现,吸收光谱呈宽吸收特性,在近红外区有对光的吸收强度,强度随还原剂的增加而增加,随表面活性剂的增加先增大后减小,随合成温度的增加而减小。通过体外升温试验测定Re NCs升温性能,在400 ppm浓度下,经808 nm、2 W激光照射10 min后可升温30.1℃,光热转化效率高达32.5%,具有显著的光热效应。将Re NCs与一定浓度H2O2孵育24 h,透析结果表明经24 h透析后,Re元素的浓度近乎为0,证明Re NCs具有优秀的生物可降解性。为验证Re NCs的生物相容性,选用人乳腺癌细胞MDA-MB-453与Re NCs孵育24 h后细胞存活率达96.7%,证明Re NCs具有良好的生物相容性。为了探究金属纳米颗粒外形对其吸收光谱的影响,本文以SiO2微球为核,经过表面功能化后吸附并生长Re形成SiO2@Re。通过改进的St(?)ber法合成了单分散性好、粒径250 nm左右的SiO2微球,成功使用硅烷偶联剂MPTMS在表面嫁接巯基。SiO2@Re结构中Re以大小为10-80 nm纳米团簇的形式在附着在SiO2微球表面,吸收光谱仍为宽吸收特性,无共振峰。在1 mg/m L浓度下,经激光照射后最大可升温15.7℃,光热转化效率为28.22%,由TEM结果可知,SiO2微球表面附着的Re团簇量较少,导致SiO2@Re的光热转化效率小于Re NCs,但仍保持了一定的光热转化效率。SiO2@Re具有良好的光热稳定性,经三次辐照后,可升高的最高温度未有明显下降,达40℃左右;SiO2@Re同样具有优秀的可降解能力,且细胞存活率达97.5%以上,证明SiO2@Re具有良好的生物相容性。
其他文献
动力非线性分析方法存在地震波筛选影响大和计算耗时的不足,因此静力非线性分析方法成为目前抗震性能评估的主流方法之一。本文以基于静力非线性分析方法的地震作用模拟为出发点,立足于地震动频谱、持时和幅值三大特性,提出一种基于多阶段模态荷载组合的标准地震作用。基于多阶段模态荷载组合更新模式的理论研究,建立多阶段循环往复加载模式,并拓展到不同性能需求下结构抗震性能评估,实现静力地震作用模拟的标准化。本文解决地
透水混凝土具备多孔结构,因而具有透水、透气、降噪等优点。但其耐久性能令人担忧,长期使用后,其孔隙很容易被堵塞,若缺少适当的维护,其透水性能会不断劣化甚至丧失。在寒冷地区使用时,透水混凝土因其连通多孔结构,雨雪会直接进入其内部,使其容易发生冻融破坏,当采用再生骨料时,由于再生骨料内部存在损伤,透水混凝的抗冻性能会进一步降低。采用再生骨料透水混凝土铺设的路面,会承受循环荷载作用,易发生疲劳破坏,但目前
近几十年来,电信、雷达系统和无线传输的飞速发展给周围环境带来了严重的电磁波干扰污染。使用电磁波吸收材料是目前防范电磁波干扰最直接有效的方法。其中,碳化硅(SiC)具有不错的化学电阻性、卓越的机械性能、导热性能,特别是在极端条件下的应用,被证明是一种很有前途的电磁吸收材料。而单一的碳化硅不能满足日益增长的吸波材料高性能的需求,对碳化硅进行纳米化同时和其他吸波材料进行复合来提升其吸波性能成为了一个重要
随着电子器件不断向高集成度和小型化发展,功率密度也随之增加,进而导致器件产热量也大幅激增。然而,传统的Si基半导体在高于175℃下不能稳定服役,因此,在高温下仍能保持优异物理性能的以Si C为代表的宽禁带半导体受到广泛关注。然而,迄今为止,还没有合适的钎料能够充分发挥Si C优异的物理性能。因此,亟需开发出一种无铅高温芯片贴装材料,以便充分发挥其在高温下优异的物理性能。本课题提出了一种新颖的基于C
风致易损性是给定风速下结构发生超越某一破坏状态的累积概率,它是台风灾害损失评估重要手段,也是台风巨灾模型“工程模块”的核心内容。随着结构抗风研究的发展,风致易损性研究更加成熟,但研究的对象多为单体建筑,未考虑建筑群体间的干涉效应。考虑到干涉效应对建筑结构破坏的重要影响,开展考虑干涉效应的高层建筑和低矮房屋风致易损性研究是十分必要的。基于上述背景和现状,本文采用基于Monte Carlo抽样的可靠度
阴极氧气还原反应是燃料电池两电极反应中重要的一环,尽管贵金属铂催化剂拥有良好的催化活性,由于阴极反应动力学缓慢,导致燃料电池对外的输出受到限制,且地球金属铂资源储量稀少致使催化剂的成本高,并导致燃料电池的催化剂占据其成本的很大比例,阻碍了燃料电池的大规模应用。为降低催化剂成本,制备了非铂和低铂两种类型氧还原催化剂。利用Fe掺杂的沸石咪唑酯骨架材料(Zeolitic Imidazolate Fram
3D打印技术能够以较高精度成型结构复杂的目标构件,它是一种极具潜力的结构型吸波涂层的制备方法。以FeSi颗粒和Co颗粒为代表的铁磁金属是一种常用的电磁波吸收剂,它易于获取且电磁性能优异。以铁磁金属作为吸收剂,采用3D打印的制备方法,有望获得制备工艺简单、性能优异的电磁波吸收涂层。本文对Co和FeSi两种铁磁金属电磁参数随填充率和粒径因素的变化规律进行了研究,结合遗传算法和BP神经网络等计算机辅助手
高浓度难降解有机废水常采用Fenton高级氧化与生物处理组合工艺。Fenton处理出水通常盐分高,含有大量SO42-(投加硫酸所致)及大量Cl-等其它离子(原水带入),高盐分导致传统活性污泥处理效率降低。好氧颗粒污泥(AGS)作为一种高效的生物处理技术,关于Cl-对AGS的影响研究较多,SO42-及混合盐(SO42-、Cl-)对AGS的影响研究较少。本课题研究了AGS处理含SO42-、Cl-及混合
操控技术始终在各个学科领域内扮演着重要的角色。在生物细胞、化学制药、电子装配以及人体医疗等领域内,逐渐浮现出对于非接触式操控的需求。超声作为一种廉价、无损的能量载体也在非接触式操控领域中得到广泛应用。声操控相对于其它的非接触式操控方式有着操控灵活、能够穿透人体以及对被操控物体没有特殊要求的优势。传统的声操控通常都使用驻波操控。驻波操控虽然操控能量大,但却有着操控力方向单一,且需要声学元件包围被控目