论文部分内容阅读
近年来,光子晶体的理论研究、结构设计和应用技术已成为光电子领域的研究热点。研究的核心技术是设计可以禁止或允许某一方向、某些频率光信号传输的光子晶体结构。由于光子晶体的特点,使得光子晶体在许多方面有着重要的应用,如光子晶体激光器、光子晶体滤波器、光子晶体光纤、光子晶体偏振片、光子晶体天线及光子激光二极管等。随着激光技术和无源器件及光电转换器件的发展与进步,光子晶体在传感领域得到了许多应用的机会,特别在传感器的更新和制作上,出现了一些新型光子晶体传感器,如光子晶体压力传感器、光子晶体温度传感器、光子晶体扭矩传感器、光子晶体生物传感器等,拓展了光子晶体的应用领域。本文主要对几种结构一维缺陷光子晶体的温度特性进行了理论和实验研究,具体内容包括:介绍了电磁波在光子晶体中传输的模型,分析了光子晶体固体能带的形成及分析方法,对几种光子晶体传输特性的分析方法进行了详细讨论,并采用传输矩阵法分析了构成光子晶体的材料与几何尺寸对其光学传输特性的影响,包括介质的折射率的变化、周期数和入射光角度的变化对经典的一维光子晶体的传输特性影响,介质折射率变化、周期数、缺陷层的光学厚度的变化对一维缺陷光子晶体的传输特性的影响及含负折射率介质的啁啾与变迹一维光子晶体的传输特性。在分析一维缺陷光子晶体光学传输特性时,重点阐述了缺陷层光强增强因子与介质的折射率比成正比关系,微腔的品质因子受缺陷层的调制,谐振腔光品质因子与微腔的能量损耗成比例关系。因此,在实验制备一维缺陷光子之前,对三种典型的一维缺陷光子晶体的传输特性进行了大量的仿真实验,包括低折射率介质为SiO2,缺陷层为Si的Si-Si-SiO2光子晶体,低折射率介质为SiO2,缺陷层为SiO2的Si-SiO2-SiO2光子晶体和低折射率介质为空气,缺陷层为Si的光子晶体Si-Si-Air。并分别进行了不同周期的透射谱和反射谱特性分析,发现当光子晶体的周期数增加时,谐振峰的透射率都会减小,这是由于增加了光程导致光的衰减增大,且透射谱的禁带宽度有微小的变化规律。对于相同介质周期数相同的光子晶体,缺陷层为高折射率介质的谐振峰透射率比缺陷层为低折射率介质的谐振峰透射率大,同样是由于相同的光学厚度的缺陷层,低折射率的光程大导致损耗增大。在一维缺陷光子晶体的制备过程中,由于光子晶体的几何尺寸只有微米数量级,因此为了解决不同时刻刻蚀得到的光子晶体定位问题,在芯片的一些位置设置一系列标记,且为了使这些标记处于波导结构的初始位置,标记必须和波导结构平行。实际刻蚀中,标记是由大量的与基地硅良好粘贴的50nm厚度钛上沉积Au介质的正方形构成,且Au标记在SEM下必须明显容易捕捉。本文制备了硅-空气介质的周期为6、8和10三种一维缺陷光子晶体,通过SEM图像可以看出,采用电子束曝光制版技术(EBL)和感应耦合等离子体刻蚀技术(ICP)制作的基于硅波导的一维缺陷光子晶体的结构非常理想,刻蚀过程的良好控制使制作出的光子晶体的边缘非常平滑。根据谐振腔理论,建立了一维缺陷光子晶体的温度特性数学模型,在上述研究的基础上,构建了分析光子晶体温度特性的实验模式,设计了基于一维缺陷光子晶体的温度特性及信号分析实验系统,编制了相关的数据采集、处理和谱型分析软件。采用该系统分别对硅—石英和硅—空气两种结构一维缺陷光子晶体的低温特性和高温特性进行了实验,获取了相应的实验数据和透射谱,并将实验数据与理论分析进行了对比,验证了理论的正确性。