高频功率电感用金属软磁粉芯的制备与磁性能研究

来源 :合肥工业大学 | 被引量 : 1次 | 上传用户:Baggio_Fu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
面向高频功率电感使用的金属软磁粉芯,目前面临单一材质合金粉末的磁导率与损耗很难同时优化的问题。因此,通常将几种粉末复合制成复合粉芯来实现磁性能的平衡。其中,非晶粉末由于具有低损耗和优异的磁导率频率稳定性,羰基铁粉由于具有高磁导率,因此被广泛用于各种复合粉芯的制备。本文采用磷酸钝化工艺和TEOS水解工艺对Fe-Si-Cr-B非晶粉和羰基铁粉进行了绝缘包覆,制备了非晶粉芯、羰基铁粉芯以及非晶/羰基铁复合粉芯,研究了磷酸绝缘量对非晶粉芯和羰基铁粉芯磁性能的影响规律、TEOS绝缘量对非晶粉芯磁性能的影响规律以及羰基铁粉质量分数、成型压强和烘烤温度对非晶/羰基铁复合粉芯磁性能的影响规律,并通过损耗分离分析了粉芯损耗的变化规律及其影响因素。发现:(1)磷酸钝化工艺和TEOS水解工艺均可以在磁粉表面生成致密的绝缘层,但TEOS水解工艺可以避免非晶粉末压制粘模问题。(2)磷酸和TEOS的绝缘量直接影响粉芯密度。磷酸粘性有助于促进压制提高密度,但同时会导致粉末流动性变差从而降低密度,而TEOS水解产生的纳米氧化硅也会导致粉末流动性变差从而降低密度。(3)粉芯密度决定粉芯内部的有效退磁场,磁粉材质决定磁粉的磁晶各向异性,两者与磁粉颗粒形状和尺寸所决定的磁粉内部退磁场一起,共同阻碍磁化,引起粉芯磁导率实部的下降、直流偏置性能的提高以及磁滞损耗的增大。(4)粉芯密度直接影响电阻率,进而决定粉芯的涡流损耗。(5)非晶粉末的磁导率和高频损耗均较低,羰基铁粉的磁导率和高频损耗均较高,两者复合制备的非晶/羰基铁复合粉芯的磁性能由两种粉末的配比直接决定。(6)成型压强与烘烤温度也会影响复合粉芯的磁性能。小压强可以降低涡流损耗,但会导致磁导率的下降。适中的烘烤温度可以软化树脂促进均匀包覆,有助于磁导率与损耗的优化。(7)40wt.%TEOS绝缘非晶粉末和60wt.%磷酸绝缘羰基铁粉复合制备的非晶/羰基铁复合粉芯具有良好的磁性能,所制备的一体成型电感具有较好的效率。
其他文献
目的 探讨急性缺血性脑卒中患者接受静脉溶栓治疗后发生出血的危险因素,构建预测模型。方法 纳入2014年1月—2020年12月于深圳市某三级甲等医院进行静脉溶栓治疗的急性缺血性脑卒中患者462例,将其分为出血组(n=264)和未出血组(n=198)。使用二分类Logistic回归模型分析相关危险因素,构建预测模型并进行验证。结果 年龄、溶栓前美国国立卫生研究院卒中量表评分、发病至溶栓时间、高血压史、
现代电子技术正处于快速发展时期,微电子及电力电子器件朝着小型化、集成化、高功率密度、高可靠性等的方向发展,对电子器件散热能力提出更高的要求。AlN陶瓷具有热导率高,介电损耗和介电常数低,绝缘性能良好以及与Si、Ga As等半导体材料相匹配的热膨胀系数,机械性能优良,安全无毒等优点,已成为各种电力电子器件中应用最广的电子封装材料之一。高性能AlN陶瓷基板的制备当然离不开高品质AlN粉体原料,高品质A
随着红色文化的社会关注度逐渐提高,以及大运河文化带建设国家战略的不断推进,大运河文化资源的保护和传承更具现实意义和重要价值。大运河沿线地区应树立大局意识,统筹合理规划;完善制度建设,建立区域省域协同开放保护机制;建立资金投入长效机制,确保财力落实到位;重视专业人才培养,实现人力资源配备到位;深度挖掘文物内涵,丰富展示的交互性和多元化;拓宽宣传渠道,丰富宣传教育的覆盖面。
铁酸铋无铅压电陶瓷因其具有较高的居里温度以及良好的铁电性能,在高温传感器,换能器和储存器等领域有广泛的应用前景,从而受到大量学者的关注。本论文以铁酸铋基钙钛矿陶瓷材料为基体,通过优化组成设计,构建新的陶瓷体系,研究其组成、结构、电学性能之间的关系,并研究了其压电性能,铁电性能以及能量存储性能及其相关的机理。本文的主要研究内容如下:(1)研究了La(Zn1/2Ti1/2)O3(LZT)固溶取代BiF
SiC陶瓷及其复合材料具有优异的高温力学性能、优良的抗氧化性、良好的耐腐蚀性,同时具有很低的放射性,可用于航空发动机的燃烧室及核聚变堆包层结构材料等关键部件上,被认为是苛刻环境下的理想结构材料。然而,由于SiC陶瓷具有硬度高和脆性大的特点,加工难度大。因此,想要得到大尺寸和形状较复杂的构件,对陶瓷进行连接是最理想的途径。钎焊以其方便,成本较低和高质量等优点,而得到广泛应用。本文采用Si及Si-50
过去的一年,我们深切地感受到党和国家在加快教育高质量发展、推进教育现代化、建设教育强国上迈出的坚定步伐,实施的有力举措;从“双减”政策到教育评价改革,再到新《民办教育促进法实施条例》等,基础教育领域的每一项改革内容都指向新发展理念的贯彻、新发展格局的构建、新教育生态的重塑,都事关立德树人根本任务,事关人民群众急难愁盼,事关促进学生全面发展健康成长,意义十分重大。其中,作为“双一号工程”的“双
期刊
随着微波器件向高频化、小型化、超低损耗和温度稳定性方向发展,具有中等介电常数、高品质因数且温度系数近零的微波介质陶瓷逐渐成为功能陶瓷材料领域内新的研究热点,其制备的各种微波器件广泛应用于移动通信基站、全球卫星定位等领域。本文采用传统固相反应法制备了温度稳定的BaO-0.6ZnO-4TiO2(BZT)陶瓷以及两种新型中介低损耗微波介质陶瓷Ba2MgTi5O13和Sr2CeO4,并通过离子取代的方法调
6066铝合金因为合金化水平高,添加了较多的Si元素和Cu元素,因而强度优异,抗疲劳性能、焊接性能优良,是轨道交通和航空航天等领域的理想材料。但其抗腐蚀性能不理想,在复杂的自然界环境下,腐蚀介质易引起6066合金材料腐蚀,严重影响材料使用寿命以及应用的安全性,限制了其在汽车、高速列车车体结构件、飞机机身板材等处的应用。因而,在保证6066合金现有强度的前提下,通过材料成分改性、对合金进行合理塑性变
铝钪合金具有高强度、高韧性、优良可焊性和耐腐蚀性,是新一代航空、航天、船舶用结构材料。本文熔炼制备铝钪合金,通过金相显微镜、扫描电子显微镜、背散射电子衍射、X射线衍射仪和透射电子显微镜观察,硬度以及拉伸性能测试等方法系统研究了合金在室温轧制、液氮控温轧制以及液氮控温轧制+退火处理后组织性能的变化规律。首先通过熔炼铸造制备Al-Mg-Si-Sc-Zr铸锭,发现铸锭内部元素、组织分布不均匀,存在晶内偏
作为细化晶粒、改善材料综合性能的有效方法之一,大塑性变形法具有成本较低、操作简单等优点。其中等径角挤压工艺(ECAP)作为大塑性变形中的典型代表,被广泛用于获得晶粒细小、组织均匀、三维尺寸较大的块状高性能材料。但变形抗力大的材料通过模具转角时容易出现开裂,同时冲头也会出现偏载现象。双向等通道挤压(DECAP)是在传统等径角挤压工艺基础上开发而来的一种新的大塑性变形工艺,也能够使材料发生剧烈塑性变形