【摘 要】
:
随着工业大功率激光器及其辅助设备的实用化,将先进激光技术与各类大型设备的零部件表面强化与改性技术升级紧密结合起来,激光金属材料表面热处理技术作为金属材料表面强化和改性最有效的手段之一,成为了国内外研究的热点。而光纤传输横截面为矩形的激光光束不仅可以有效提高激光热处理的效率,而且能够在狭小的零部件内部实施柔性激光热处理。高功率激光系统中的光学透镜因吸收高能量密度激光能量而在其内部产生较大温度梯度时,
论文部分内容阅读
随着工业大功率激光器及其辅助设备的实用化,将先进激光技术与各类大型设备的零部件表面强化与改性技术升级紧密结合起来,激光金属材料表面热处理技术作为金属材料表面强化和改性最有效的手段之一,成为了国内外研究的热点。而光纤传输横截面为矩形的激光光束不仅可以有效提高激光热处理的效率,而且能够在狭小的零部件内部实施柔性激光热处理。高功率激光系统中的光学透镜因吸收高能量密度激光能量而在其内部产生较大温度梯度时,光学透镜将会发生热变形,透射率也随之发生变化,从而影响高功率激光系统的激光传输质量,因此合束器的光机热集成分析显得格外重要。本文按照矩阵平行排列18束光纤输出的972 nm半导体激光束,通过光束准直和空间非相干合束,获得了具有矩形光斑特征的10 kW级合束激光。在理论分析准直激光束的半径、相邻光束间距与合束激光的光斑搭接率之间变化规律、采用光学设计软件建立合束器结构模型及光学仿真软件模拟合束激光光斑能量分布的基础上,完成10 kW级18×1的矩形光斑激光合束器的研制。在200 mm的合束长度内实现了具有单一矩形光斑形貌、最大合束功率10.249 kW、焦斑尺寸31 mm×11 mm、中心波长972.34 nm、谱线宽度2.27 nm的合束激光输出。使用有限元分析软件对矩形光斑激光合束器的光学透镜建立有限元热分析模型,利用热成像仪对10 kW激光合束工作时的窗口镜温度实施测量,获取符合实际情况的空气对流热交换系数测量值,对有限元热分析模型进行修正,从而获得10 kW合束激光照射200 s时矩形光斑激光合束器中所有光学透镜的温度场、形变及热应力模拟仿真数值。光学透镜的最高温差仿真值为89.131℃,最大形变仿真值为1.21×10-6m,对应的4.74×10~6Pa最大热应力仿真值小于60×10~6Pa紫外融石英光学玻璃的热损伤阈值,验证了所有光学透镜不会产生热应力损伤。在此基础上,利用Zernike多项式作为有限元分析软件与光学设计软件的接口工具,将有限元分析得到的镜面面型带入到光学设计软件中,获得矩形光斑激光合束器中所有光学透镜通光面曲率半径的变化量。10 kW合束激光照射200 s时,光学透镜通光面曲率半径的最大变化量为0.1光圈,小于±1光圈的光学透镜加工公差,从而进一步验证了合束器的工作可靠性与结构稳定性。
其他文献
γ-石墨单炔(γ-GY)作为一种新型二维碳基半导体材料,具备低形成能、高稳定性、大比表面积、丰富孔洞结构等特点,在半导体器件和电路等领域应用前景广阔。目前对于γ-GY的研究工作依旧处于探索阶段,γ-GY的实验制备方法和具体器件领域应用寥寥无几,此前γ-GY的热敏特性和气敏特性也未被实验研究过。本文首次提出了γ-GY的恒温搅拌制备法,并通过实验探究了γ-GY的热敏特性和气敏特性。本文的研究工作将为γ
量子计算是基于量子物理定律的计算机科学研究领域。随着量子计算的快速发展,在一些特定的问题上,量子算法被证明比经典算法更有效,这使得量子计算成为一个很有吸引力的课题。Grover搜索算法作为一种经典的量子算法,它已被证明比任何经典搜索算法都快,经常会被应用于数据库的搜索、复杂方程求解等方面。本文以量子计算和数学理论为基础,对在多解、超比特空间中的搜索问题进行研究。详细内容如下:Grover算法可以在
在现代电子测量系统、生物医疗仪器、声呐信号检测等微弱信号处理领域,对高精度(分辨率>16 bits)ADC的需求非常迫切。由于Σ-ΔADC可以采用高精度的数字信号处理技术、过采样技术和噪声整形技术,通过这些技术能够有效地提高性能从而获得较高的分辨率。作为Σ-ΔADC的重要组成部分,数字抽取滤波器的主要功能是将Σ-ΔADC前端调制器的输出进行抽取与滤波处理,恢复采样信号的原本信息,通常其面积和功耗在
密码学在人类发展过程中一直处于非常重要的地位。从古典密码学中的恺撒密码和反切码等密码方法,到现代密码学中的非对称RSA算法,密码学在日常生活中的应用也越来越广泛,并渗入到经济、军事等各个领域,给国家和人民的生活带来了极高的安全保障。然而,经典密码学基本上都基于数学难题的计算复杂度,无法给出不可破解的安全证明。并且,在量子算法和量子计算机的深入研究下,经典密码学面临着极大的威胁。于是,提出了安全性更
物联网技术靠海量节点感知物理世界,提高人民生活水平,同时使自然环境和人文遗迹得到更好的保护。但数以万计节点同时工作需要消耗巨大的能量,限制了物联网的进一步发展和广泛部署。低功耗广域物联网LPWAN(Low-power Wide-Area Network,LPWAN)技术因具有低功耗,远距离,广覆盖的优势,受到越来越多的瞩目。其中LoRaWAN网络更是因其优越的远距离传输性能和开放性备受推崇。近年来
稀土离子掺杂荧光材料具有高效率、易合成、低成本和稳定性高等优势,被广泛应用于LED白光照明。寻找新型的荧光材料以获得最接近太阳光的白光是现如今研究的主要目标。传统的研究方法是基于大量的实验,在时间和成本上存在很大缺陷。另外,实验也很难对许多现象从底层的物理机制出发给出很好的解释。例如,掺杂浓度对晶体结构和发光性能的影响非常复杂,发射带和发光中心很难确定,能量传递机制无法解释等等。本文从第一性原理计
一些激光束在受到障碍物的影响后,由于光束本身的性质,在后续的传播中障碍物对光束的影响会逐渐减小甚至于消失,学界将光束所具有的这种性质称为自修复特性。经过三十多年的发展,关于光束自修复特性的研究已经成为了激光光场调控、传输及应用这个专题的一个热点,许多学者都对自修复特性的研究作出了贡献。目前,有关光束自修复特性的研究成果已经被成功地应用在了光镊、显微镜、无线光通信等领域。可以预见,激光束自修复特性的
量子信息是一门由量子力学与信息学交叉产生的新兴学科,量子通信是量子信息的一个重要内容,量子通信借助量子态进行经典信息的传递,由于量子态的量子特性,量子通信的安全性与通信效率相比于经典通信得到了很大的提高。量子隐形传态与量子密钥分发是量子通信的两大关键技术,量子隐形传态利用量子信道与经典信道完成未知量子态的传输,具有安全高效的应用价值;而量子密钥分发借助量子态进行密钥分发,具有理论上的无条件安全性,
光纤激光器具有光束质量好、价格低廉、结构简单和转换效率高等优点,因此被广泛应用于精密机械加工、生物显微镜、医用手术设备、光纤通信、激光雷达等领域。在光纤激光器中损耗元件可以用来调制质量因子或者维持稳定模式锁定从而实现调Q和锁模。近年来,新型光学可饱和吸收体的出现促进了光纤激光器的发展,与采用有源调制器的方法相比,新型二维材料可饱和吸收体以其波长无关性、高散热性和高损伤阈值等特点引起了广大研究者的兴
情绪识别作为脑机接口研究热点,在心理健康、生物医疗、艺术评测等众多领域扮演越来越重要的角色。相比于以往基于面部表情的情绪识别而言,基于脑电信号的情绪实验研究不仅能够克服面部表情特征不明显、人为隐藏情绪做出错误的面部表情造成的错误识别,而且能够借助深度学习方法深层挖掘深层特征,高度识别复杂情绪。然而,EEG信号存在频段复杂多样、噪声干扰强、非平衡性等特点,在基于脑电信号的深度学习方法进行情绪识别时如