锂镧钛氧/聚合物复合固态电解质的制备及其电化学性能研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:ljy2010
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
固态电解质以其高安全性、适用于高能量密度电池等优点而备受关注。单一类型的固态电解质由于锂离子传导率低、与电极的固-固界面接触性差、对强还原性电极的电化学稳定性差等问题,难以实际应用。目前聚合物/氧化物复合固态电解质被广泛研究,聚合物固态电解质起到改善固-固界面接触、保护氧化物固态电解质不受强还原性电极影响等作用,氧化物固态电解质则增大机械强度、利用表面氧空位促进锂盐解离来提高锂离子传导性能。本论文主要针对锂镧钛氧(LLTO)/聚合物复合固态电解质进行优化设计,探索改良LLTO固态电解质填充物的制备工艺来使其获得优异的形貌结构与组分,研究聚合物与LLTO之间的比例对复合固态电解质电化学性能的影响,研究含氟电解质添加剂在复合固态电解质中的界面自修复机理。具体研究成果如下:(1)采用溶胶凝胶法结合两次烧结的工艺,制备三维框架结构的钙钛矿型固态电解质Li0.35La0.55Ti O3(LLTO)。该Li0.35La0.55Ti O3氧化物固态电解质结晶度高、杂质含量低,减少了锂离子在LLTO内部迁移的障碍,同时其三维框架结构为锂离子提供了连续的传导路径。将LLTO与聚氧化乙烯(PEO)复合,LLTO与PEO之间形成连续的聚合物-氧化物界面,LLTO表面氧空位与PEO中的锂盐的阴离子形成Lewis-酸碱对,促进了锂盐的解离,增加电解质内部锂离子的浓度,提升复合固态电解质的锂离子传导性能。(2)不同的LLTO与PEO的质量比例对复合固态电解质的电化学性能有着重要影响。当LLTO和PEO的质量比为1:1时,所获得的复合固态电解质1LLTO-1PEO的综合电化学性能最好,50℃时锂离子传导率为1.72×10-4S·cm-1、电子电导率为4.47×10-9S·cm-1;在0.2 m A·cm-2的电流密度下,锂的沉积/剥离循环稳定性可达500 h。(3)往1LLTO-1PEO添加氟代碳酸乙烯酯(FEC)进行改性,通过辊压的方式制备得到1LLTO-1(PEO-0.15FEC)复合固态电解质。经过FEC的改性,在提高锂离子传导性能的同时还降低了复合固态电解质的电子电导,电化学窗口从4.5 V(vs.Li+/Li)扩大到5.2 V(vs.Li+/Li),在0.2 m A·cm-2的电流密度下可稳定进行锂沉积/剥离800 h。FEC的加入大幅提高了复合固态电解质的电化学稳定性。通过恒电流在线阻抗测试与XPS分析发现,1LLTO-1(PEO-0.15FEC)在锂沉积/剥离循环的过程中,复合固态电解质中的FEC与锂离子形成FEC--Li+,使固态电解质具有界面自修复功能。Li|1LLTO-1(PEO-0.15FEC)|Li Fe PO4全固态电池在50℃下以0.5 C的倍率稳定循环100圈并保持115 m Ah·g-1的放电比容量,在35℃下以0.5 C的倍率稳定循环100圈并保持86 m Ah·g-1的放电比容量。
其他文献
异构社交网络是一种包含不同类型的节点和边的社交网络,它不同于传统的同构社交网络的地方在于它包含着许多的语义信息。异构社交网络上的链接预测是指根据异构社交网络所提供的拓扑信息和语义信息来预测两个节点之间形成边的可能性。元路径是一个以节点为端点、节点和边交替出现的序列,它是异构社交网络中常用的拓扑信息和语义信息提取工具。因此,本文的研究重点是探究如何更加高效地使用元路径来提取和利用异构社交网络中的拓扑
随着“智慧城市”建设的不断推进,人们对公共安防提出了高效化、智能化的要求。传统的人工方式已难以处理日益增长的监控数据,因此需要一种能对监控视频结构化数据进行自动化提取与管理的方法。本文以行人视频数据结构化为中心,结合深度学习相关算法,分别从数据集智能标注、行人属性信息的精细化提取与描述、多目标关联与跟踪方法以及视频结构化系统设计四个方面展开工作,取得了如下成果:1)为了满足行人视频数据结构化过程中
随着城市化进程的快速发展,更多的视频监控摄像机安置在城市的各个角落,由此产生了海量的视频监控数据。对视频中关键信息的获取和分析已经不能单纯的依靠人力来完成,将深度学习技术应用到多摄像机监控中能够带来极大的便利。视频数据结构化能够提取单个摄像机视频监控的行人序列信息,行人目标再识别能够将不同摄像机中的相同行人目标进行匹配关联,从而能够实现多摄像机监控中行人综合信息的获取。本文将深度学习技术结合到多摄
耐甲氧西林金黄色葡萄球菌(MRSA)是主要的临床致病菌之一,其引发的感染难以治疗甚至可能致死。由于近些年抗生素的滥用,出现了对所有的β-内酰胺类药物都具有抗性的MRSA菌株。研究表明金黄色葡萄球菌细胞壁主要成分胞壁酸是引起耐药性的关键因素之一。在革兰氏阳性菌中,胞壁酸是一类共价连接在肽聚糖上的阴离子多聚物。胞壁酸在细菌分裂、生物膜形成、宿主定殖以及细菌感染等过程中起着重要作用。因此,胞壁酸合成路径
森林地表火蔓延是森林火灾的重要形式,坡度作为影响火蔓延的重要因素备受研究者关注。实验研究方面,实验室或野外火蔓延实验往往在有限尺寸的燃料床上展开,但不同坡度条件下燃料床宽度的影响往往被忽略;理论研究方面,火蔓延模型的建立通常基于火前锋无限宽假设,火线宽度的影响未受到重视。文献调研结果表明,燃料床宽度对火蔓延速率(ROS)及火焰动力学特征具有显著影响,但缺乏对上坡火蔓延过程中燃料床宽度影响的研究。此
2020年5月审议通过的《民法典》第1234条中也明确提出将生态环境修复责任作为一个独立的责任承担方式。但生态环境修复责任在理论和具体实践中仍存在着诸多争议,特别是对生态环境修复责任的性质争议更多。“生态环境修复”主要来自于环境科学当中的生态环境修复概念,在被引用到法学领域后,结合法学理论,逐渐地演化为环境法主体的义务性规定以及民法中的救济方式。生态环境修复责任作为民法的一种救济方式的发展过程中,
如今,水下自主式航行器已经广泛运用于各个领域,其广泛的适用性可以为水下探测、科研考察、事故救援等领域带来极大的便利。仿生型水下机器人作为水下自助式航行器的一个分支,利用仿鱼类的运动方式,较好的改善了传统螺旋桨式航行器的低效率、高能耗、高扰动性的问题,是未来业界研究的重心。为了改善水下机器人的运动效率,减少其受到的阻力是设计的重点,针对水下机器人的减阻问题,本文从非光滑表面减阻的角度出发,利用仿真分
C-C键偶联反应在有机反应中应用非常广泛,它能够通过简单的反应将分子变为复杂的化合物,而过渡金属催化的C-C键偶联反应被大量应用于复杂化合物的合成。可见光作为一种清洁能源,其诱导催化的氧化还原反应策略广泛应用于有机小分子的合成,并且成功构建C-C键反应。随着对绿色化学的要求,如何寻找高效清洁的绿色催化合成策略则成为至关重要的问题,我们的解决方法是将催化剂负载到新型的材料上实现催化剂的回收利用。本论
人类社会的高速发展面临着日益严重的能源短缺的问题,而光电催化分解水技术有望解决这一难题。数十年来,人们一直致力于研究光电催化分解水的光电极材料。赤铁矿(α-Fe2O3)由于禁带宽度合适、储量丰富、无毒和价格低廉等优点受到广泛关注和研究,但光吸收系数小、水氧化速度缓慢、载流子迁移率低以及空穴扩散距离短等劣势导致其光电催化性能较低,光电流密度远远低于理论值。因而,通过改性α-Fe2O3提高其光催化性能
环境议题一直以来都是建筑学中的重要议题,从班纳姆的环境调控,到迪恩霍克斯对于选择型环境模式的发展,再到环境的建构。建筑学科的进步总是伴随着社会变革、历史事件以及优秀样本的发现。在2020年新冠肺炎疫情的冲击下,环境议题又将会是建筑学科关注的重点。正是在这样的背景下,笔者试图通过选取台湾地区的早期现代主义建筑作为样本进行分析,期冀在前人的理论基础上做一些样本验证的工作,并梳理其中可能存在的设计原则从