具有非线性恢复力和外力激励的Duffing-Van der Pol系统的复杂动态

来源 :湖南师范大学 | 被引量 : 0次 | 上传用户:jxczl900424
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文应用动力系统的分支理论,二阶平均方法,Melnikov方法和混沌理论,研究带非线性恢复力和外力激励的Duffing—Van der Pol方程随系统参数变化的复杂动态行为,我们给出了谐波介和其分支存在的条件,以及在周期扰动下系统产生混沌的准则,也给出了在ω2=nω1+∈v,n=1,2,3,4,5,7的拟周期扰动下平均系统产生混沌的准则,数值模拟验证了理论结果正确性,而用平均方法不能给出在ω= nω1+∈v,n=6,8,9-15(这里ω1.与v不为有理数)的拟周期扰动下产生混沌的准则,但数值模拟显示了原系统出现混沌。同时,用数值模拟(包括同宿和异宿分支曲面,动态分支图,最大Lyapunov指数图,相图,Poincaree映射图)发现了许多新的复杂动态,我们发现周期倍分支和来自周期一和周期三轨的逆周期倍分支到一个混沌吸引子或到两个分离的混沌吸引子,混沌行为和周期窗口的交替出现,混沌的突然出现和突然收敛到周期二轨,带有复杂周期窗口和不带周期窗口的大范围混沌区域,不带周期窗口的不变环,具有复杂不变环的混沌区域以及内部危机。本文研究具有非线性恢复力和外力激励的Duffing—Van der Pol方程是前人未研究过的,这研究将丰富动力系统的内容,并具有一定的应用前景. 全文共分三章.第一章是关于连续动力系统的分支理论、二阶平均方法、Melnikov方法与混沌理论的预备知识。 第二章简单介绍了Duffing—Van der Pol方程的一些历史背景知识. 第三章应用二阶平均方法和Melnikov理论研究具有非线性恢复力和外力激励的Duffing—Van der Pol方程,给出了谐波介和其分支存在条件以及周期扰动下系统产生混沌的准则,也给出了在ω= nω1+∈v,n=1,2,3,4,5,7的拟周期扰动下平均系统产生混沌的准则,而不能给出在ω=nω1+∈v,n=6,8,9-15的拟周期扰动下产生混沌的准则,但数值模拟显示了原系统出现混沌,用数值模拟我们给出十个系统参数变化时系统动态的变化。
其他文献
在很多应用中,我们可以合理的认为来自于同一个团(cluster)的数据是可交换的.实际上,在一些团型抽样调查(cluster sample surveys)中,畸形学试验(teratological experiments)中、眼科及
部分因析(FF)设计在因子试验中经常用到,纯净效应是选择部分因析设计的一种常用的最优性准则.在因子调查中,特别是在物理试验中,经常有水平数为四的因子,在这样的试验中经常会用
本文共分两部分: 第一部分:广义模糊双理想和广义模糊拟理想,首先,借助t-模算子给出了广义扩张乘法运算,并在这种乘法意义下给出了广义模糊双理想和广义模糊拟理想的定义,进而得
本文主要对保形插值曲线进行了较深入的研究,给出构造具有良好保形性和光滑性的插值曲线的新方法。文章一共包含四章内容。第一章中,首先回顾了CAGD中曲线曲面造型的发展及现
纠错码的理论基础是由数学为支撑。在实际应用中,它的发展则源于现代通信电子计算机技术中差错控制的研究的需要。随着信息技术的发展,编码理论得到迅速的发展。尤其是二十世