论文部分内容阅读
单个的二能级原子和单模的量子化场相互作用构成了量子光学中一个最基本的模型,它给了物质与波进行一次单独对话的机会,人们一直希望这次对话尽快开始,进而找到一把发掘大自然最基本元素的钥匙。到了1946年,E. M. Purcell发现在一个“封闭的盒子”内,原子的自发辐射会发生改变,这极大地挑战了A. Einstein的自发辐射理论,人们更需要证实在这个“小盒子”内究竟发生了什么。腔量子电动力学(Cavity QED)为此提供了一个平台,在这个系统中物质与波之间的相互作用被量子化到单个原子与单个光子的水平,并保护脆弱的粒子不被外界环境所破坏,人们开始发掘单个原子、光子、甚至场(真空)的物理本质。现今人们已成功构建并实现了单个原子与腔场的强相互作用(强耦合),利用单个原子进行信息的存储,通过单个光子实现信息的传递和读取,实现了对单个量子态的测量和控制。人们可以确定性地操控单个粒子和场之间的相互作用,同时利用量子信息传递的非定域性,实现了量子比特之间的量子通信,并构建多比特的量子逻辑门。进而突破测量理论,不仅可以对单个原子进行量子非破坏性测量,而且测量精度可达到量子极限。至此Cavity QED系统在未来构建量子网络,实现高速精确的量子计算及精密测量等方面发挥着重要作用。本文主要围绕强耦合双光学微腔的构建及单原子的俘获与测量展开,具体内容如下:1、搭建完成一套高精细度双光学微腔系统,包括真空系统,磁光阱冷却与俘获原子系统,两个高精细度光学微腔,锁定两个微腔的频率链系统,及单个原子偶极俘获和荧光探测系统。两个高精细度的光学微腔均达到强耦合,耦合强度及腔与原子损耗为(g。,κ,γ)/2π=(10.6,2.3,2.6)MHz,并置于同一真空气室内。频率链系统用于完成对两个光学微腔的锁定。磁光阱冷却与俘获系统用于俘获腔上方的原子团。单原子偶极俘获系统用于在自由空间中俘获单个原子。荧光探测和收集系统包括对辐射光场信号的探测和采集分析,以及控制整个系统工作的时序控制程序。2、对单个原子的俘获和测量。利用远失谐微米尺度的光学偶极阱成功俘获单个原子,并对单个原子进行成像。测量得到单个原子辐射荧光的非经典统计特性,光场呈明显的反聚束效应,单原子辐射荧光的二阶相干度为g‘2)(τ)=0.12±0.02,单个原子在亮阱中的寿命为9s,在暗阱中的寿命约为18s。3、光场非经典统计特性的理论和实验研究。提出了基于普通商用单光子探测器的一种新的非经典判据,此方案中分别采用三或四探测器,考虑了系统效率和背景噪声的影响,研究了不同光场的非经典统计特性。结果表明与可分辨光子数的单探测器相比,此方案降低了对系统效率的要求,实验上分别验证了相干光场和热光场的结果,理论与实验基本符合。4、基于双Cavity QED系统飞行比特之间的纠缠转移。以实验上现有的高精细度双光学微腔系统为基础,理论研究纠缠从光场向两个飞行原子之间的纠缠转移,克服实验上的一些技术难题,不需要将两原子同时和同步地俘获在微腔内。研究了两种非高斯纠缠光场驱动下的结果:NOON态和纠缠相干态(Entangled Coherent State, ECS)。并数值模拟了实际实验条件下的结果,结果表明纠缠可以有效地转移给两个飞行的原子。引入损耗分析研究了整个纠缠转移的动力学演化过程,发现在损耗很大时,两原子间只存在很弱的量子关联。