【摘 要】
:
宇宙的天文学观测结果表明,除了可见物质,暗物质和暗能量占据了宇宙成分的大部分。关于暗物质粒子的研究,有可能在物理学领域产生革命性的突破。2015年我国发射的暗物质粒子探测卫星“悟空号”,首次直接测量到了电子宇宙射线能谱在0.9TeV处的变软,并且在约1.4TeV处能谱呈现出具有精细结构的迹象,但仍待进一步确认。由于探测器尺寸和结构的限制,“悟空号”的伽马射线探测能力比较弱,而伽马射线在暗物质间接探
【基金项目】
:
国家留学基金(CSC NO.201806340174);
论文部分内容阅读
宇宙的天文学观测结果表明,除了可见物质,暗物质和暗能量占据了宇宙成分的大部分。关于暗物质粒子的研究,有可能在物理学领域产生革命性的突破。2015年我国发射的暗物质粒子探测卫星“悟空号”,首次直接测量到了电子宇宙射线能谱在0.9TeV处的变软,并且在约1.4TeV处能谱呈现出具有精细结构的迹象,但仍待进一步确认。由于探测器尺寸和结构的限制,“悟空号”的伽马射线探测能力比较弱,而伽马射线在暗物质间接探测方面发挥着重要的作用。因此,我国科学家提出了研制一款高性能的高能伽马射线、宇宙射线探测器——甚大面积伽马空间望远镜VLAST,其在继承“悟空号”优异的能量分辨和粒子鉴别本领的基础上,强化探测器的伽马射线探测能力,期望在伽马射线线谱或其他暗物质特征谱型的探测方面取得突破性进展,并在GeV-TeV伽马射线天文理论研究方面取得重要成果。在原型设计阶段,VLAST包括四个子探测器,分别是大面积、高分辨率的硅径迹探测器;精确测量带电粒子能量的锗酸铋晶体量能器;中子探测器和包裹着以上三个子探测器的反符合探测器。其中由大面积硅微条单元组成的硅径迹探测器可以对入射的带电粒子和高能伽马射线进行高精度的径迹测量。本论文主要工作包括两个部分:1.完成了 VLAST硅微条探测器原型模块的封装制作和数据获取系统的开发,并对所研制的探测器原型模块进行了初步的电子学测试。2.基于硅微条探测器的参数化模型,模拟了单层硅微条探测器的不同结构和电子学参数对探测器位置分辨的影响。然后在VLAST硅微条探测器模块原型的基础上,构建了 VLAST多层硅微条探测器系统,并对其角分辨能力进行了模拟。论文第一章介绍了暗物质粒子探测等空间天文研究的前沿问题和高能天体物理领域的一些实验设施,然后对VLAST探测器的进行了简单说明,第二章介绍了粒子探测的基本原理和一些常见的径迹探测器类型,然后举例说明了硅径迹探测器在空间粒子探测实验中的应用。第三章介绍了硅微条探测器中信号的产生机制与分析方法。论文第四章展示了 VLAST硅径迹探测器模块的研制方法和测试结果。在模块的研制方面,包括探测器的封装与前端电子学的设计、探测器数据获取系统的研制和上位机控制软件的开发。探测器模块的电子学测试部分包括探测器动态范围内的线性表现、通道间串扰的测量以及探测器通道的基线和噪声。测试结果表明本论文研制的VLAST硅径迹探测器模块可以实现348条探测器通道低噪声读出,当负载为一块探测器单元时,平均电子学噪声约为725e-,在电荷测量芯片的输入动态范围0-200fC内,系统的线性表现优于3%。论文第五章基于Allpix2仿真软件,对VLAST硅径迹探测器模块的位置分辨进行了模拟仿真,分析了硅微条探测器的电荷分配特性,探究了硅微条探测器的条带间距、信噪比、中间条带数目、粒子入射角度和二进制触发读出等不同特性参数对探测器位置分辨能力的影响。分析结果表明,在读出电子学间距一定时,隔条读出的方式对探测器的位置分辨有较大的提升。论文第六章建立了包括多层钨板在内的18大层的VLAST硅径迹探测器原型系统,结合第五章的参数化仿真模型,模拟了多层硅微条探测器的角分辨能力与入射伽马射线的能量和角度的关系,模拟结果表明对于垂直入射的50GeV伽马射线的径迹重建,VLAST硅径迹探测器原型系统的角分辨优于0.1度。
其他文献
归功于微制造和集成电路技术的快速发展,使微型机电系统(MEMS)如各类便携式通讯设备和小型传感器等的快速原型设计和批量制造得以实现。当前,通常以各类化学电池为MEMS系统提供动力,但由于其体积能量密度较低,导致其在小型化方面存在较大的瓶颈。而相较于各类化学电池,碳氢燃料的能量密度要高十几甚至几十倍。因此,以碳氢燃料的微小尺度燃烧为MEMS供能从理论上将具有高能量比和可快速充能等显著优势。作为一个有
三维(3D)有机-无机钙钛矿由于其显著的光电性质已经成为最有前途的薄膜太阳能电池材料,但是三维钙钛矿在电池工作环境中较差的稳定性成为其未来商业化最主要的障碍。在最近的报道中,二维(2D)Ruddlesden-Popper钙钛矿太阳能电池(PSCs)已显示出比三维PSCs更好的稳定性,但相比于三维PSCs其效率较差,这种相对较差的效率归因于二维体系中有机阳离子层对平面外电荷传输的抑制。本论文通过热铸
随着能源短缺和环境污染等问题日益突出,优化新型能源转换装置(如锌-空气电池)的关键之一是设计并制备出高效且价格低廉的电催化剂。虽然贵金属催化剂铂(Pt)、钌(Ru)和铱(Ir)已经具有良好的催化性能,但是其昂贵的价格、匮乏的储量和较差的稳定性严重制约了锌-空气电池的规模化应用。所以,研制价格低、高效稳定的非贵金属催化剂对于锌-空气电池的发展及商业化应用有着重要的意义。据文献报道,CoSe2具有良好
环境污染与石化能源短缺使人类可持续发展举步维艰。为了突破这一窘境,亟需开发一种具有高能量密度的储能体系,以满足诸如电动汽车和移动电子产业的需求。在众多解决方案中,锂空气电池因具有超高理论能量密度(不计氧气可高达11430 Wh/kg)、环境友好性(无污染,反应物只有氧气)等优点,成为目前各类化学储能体系中最有前景的技术之一。然而,其广泛应用已经被放电产物分解较差、循环稳定性不佳和电池寿命不足等因素
Ga2O3薄膜晶体由于高温生长引进了大量缺陷导致其紫外探测器件的响应度不高,而一维纳米材料具有的比表面积大、散射作用强以及纳米材料本身存在的内建电场等优势,可以有利于提高紫外探测器件的光电流、响应度等参量,近年来受到人们广泛的关注。从报道结果来看,Ga2O3纳米材料主要是通过化学气相沉积(CVD)的方法获得,该方法一般要求生长温度较高,从而限制了应用;溶液法具有工艺简单、成本低等特点,但重复性、可
地铁交通系统由于其基本上不占用地面空间、乘客运载量大、运行速度快且节能环保等优点而成为各个城市优先发展的公共交通系统。然而,在地铁交通系统中,火灾安全问题一直是人们所关注的问题之一。本文主要就地铁列车发生火灾停靠在地铁区间隧道内时,地铁区间隧道内的火灾烟气在受到地铁列车的影响下而呈现出来的输运特性进行了研究,主要包括隧道顶棚下烟气温度的分布规律、烟气逆流长度、火源下游空间的热环境等,并初步探讨了地
随着世界各国城镇化建设的不断推进,城市人口占总人口的比重逐年升高。面对公共交通设施内日益频繁的拥挤现象以及大规模人群集会中的踩踏事故,有必要对行人动力学进行深入研究以更好地实施人群管控,保证行人出行和集会时的舒适性和安全性。单向与相向行人流是日常生活中最常见的运动形式,基于当前研究现状,我们开展了直角转弯处、楼梯上和包含两人群组的单向与相向行人流运动实验。通过提取行人运动轨迹,我们系统地研究了这三
伴有凝结的可压缩流动在生产、生活中广泛存在,如汽轮机叶片运行、云室、超声速飞机机翼后缘等。在凝结瞬间,水蒸气由气态变为液态,释放大量潜热,到达临界状态后产生凝结激波,对流场结构产生显著改变;流场的改变特别是凝结激波的出现,导致气体热力学状态剧烈变化,反过来又影响凝结。凝结和流场的相互作用使流场变得复杂难测,其研究一直是流体力学领域的重要课题。近年来计算机技术和计算软件的发展,使得精细地数值研究更大
舱室火灾是火灾科学研究的经典问题,然而部分理论并没有考虑舱室压力的影响。随着社会的发展,频繁发生的压力舱室内火灾逐渐引起人们的重视,诸如打压期间的核电安全壳、飞机巡航时的货舱等。由于此类舱室功能特殊且灭火难度大,往往一旦受到火灾影响即导致严重的后果。因此,研究舱室压力对火灾燃烧的影响,指导此类压力舱室的火灾防治,是急需解决的科学问题。在火灾初期增长阶段,火源功率较小,舱室内环境参数(压力、温度和气
飞行器再入空间大气层时,表面极易因化学热防护材料的烧蚀以及激波加热等原因形成致密的等离子体鞘套。该鞘套会在一定程度上造成电磁波信号的反射、散射,折射等,从而与外界通讯信号中断,对测控通讯产生严重影响。因此,克服黑障问题对航空航天、国防军事安全等领域至关重要。目前,受限于再入探测手段,鞘套等离子体的物理参数和过程还需要深入的研究。因此,我们提出了一种新型电极嵌入式探针一双平装探针用于诊断鞘套等离子体