论文部分内容阅读
高强度微波预处理是一种极具发展潜能的木材改性新技术,国内外研究重点集中在木材微波预处理工艺探索以及微波预处理材物理力学性能研究等方面,而对木材高强度微波预处理机理缺乏系统研究。本文以速生人工林杨树木材为研究对象,系统研究了超宽频率范围内杨木介电特性,阐明高强度微波预处理对杨木温湿变化特性、宏-微观构造等影响规律,构建高强度微波预处理杨木水分非均匀分布热迁移和微波爆破预处理模型,探明杨木单细胞微波爆破预处理临界条件,最终揭示杨木高强度微波预处理机理,以期为速生杨木高强微波预处理改性和高附加值功能木质复合材料制造技术的后续研究提供科学依据和理论支撑。本研究的主要结论有:
(1)揭示了超宽频率范围内杨木介电特性变化规律,构建了杨木介电常数、损耗因数与影响因子间的量化数学模型,确定了微波预处理过程中杨木试件的厚度范围:杨木介电常数和损耗因数随着含水率和温度的增加而增大,随着频率的升高而缓慢减小,当杨木含水率从0%增加到98.91%时,杨木介电常数最大可增加8.2倍,损耗因数最大可增加86.3倍;杨木介电特性存在各向异性,纵向介电常数和损耗因数大于横向,径向略大于弦向;含水率对杨木介电特性的影响最显著,温度次之,纹理方向最小:杨木介电特性数学模型拟合系数的平方都在0.90以上,能很好的模拟杨木不同纹理方向介电特性随含水率的变化;采用915MHz和2450MHz频率的微波对高含水率(100%左右)杨木进行预处理,试件厚度应分别控制在12cm和4cm以内。
(2)探明了高强度微波预处理条件对杨木温湿变特性的影响规律,并计算了杨木内部的微波场强:高强度微波预处理能使杨木温度迅速升高,最大升温速率可达3.03℃/s;杨木内部的温度分布存在不均匀性和复杂性,且不存在整体性固定分布模式的温度场;微波功率越大,升温速率越快,终了温度越高;微波辐射时间越长,恒温期越长,终了温度越高;初含水率越低、厚度越大,杨木内部温度分布越均匀;高强度微波预处理能显著降低杨木含水率,每千瓦微波能每小时能排除0.4~1.1蝇的水分,失水速率最大可达1.22%/s;提水率随着微波时间的增大而增大,随着初含水率的增大而减小;杨木内部的微波场强与含水率和温度有关,微波场强度随着温度升高而增大,随着含水率的增加而降低。
(3)探明了高强度微波预处理对杨木微观和宏观构造的影响规律,揭示了杨木高强度微波预处理过程中裂纹产生机理:微波预处理后,杨木横切面出现明显裂纹,且裂纹主要沿着木射线方向呈辐射状分布,裂纹长度、宽度不一;裂纹产生部位主要集中在木纤维间胞间层、导管与射线薄壁细胞胞间层、木纤维与射线薄壁细胞胞间层及导管、木纤维细胞壁的纹孔处;增大微波功率,延长微波时间,增加辐射次数是改善微波预处理材裂纹分布均匀性的有效措施;裂纹产生部位与细胞不同壁层的化学成分及微纤丝排列方向有关,木材胞间层木质素含量高、纤维含量少,纹孔周围细胞壁微纤丝角大,两者构成了细胞壁弱相结构,应力作用下易发生破坏;微波预处理过程中,细胞壁微纤丝角差异引起的干缩差异易形成细胞壁微裂纹。
(4)表征了杨木孔隙率分布,构建了杨木微观密度和微观含水率定量表征方程、水分非均匀分布下杨木高强度微波预处理热迁移模型,探明了微波预处理过程中热量的传递规律:杨木早晚材孔隙率最大相差47.5%,杨木微观密度随着孔隙率的增大而减小,微观含水率随着孔隙率的增大而增大,在不同水分饱和度状态下,杨木微观含水率差异最大可达59%;基于非匀质构建的微波预处理热迁移模型可以较为准确表征杨木水分非均匀分布对微波预处理过程中温度分布的影响,微波预处理过程中杨木内部温度差异高达98℃,饱和水蒸汽压差最大可达0.15MPa,热量从含水率为20%.60%的区域向含水率较高(120%以上)区域和含水率较低区域(20%以下)迁移。
(5)构建了杨木高强度微波爆破预处理预测模型,求解了微波爆破预处理临界压强和温度条件,揭示了微波爆破预处理机理:在杨木高强度微波预处理过程中,细胞壁处于三向应力状态(轴向应力、径向应力和周向应力),其中轴向应力在壁厚方向处处相等,周向应力和径向应力沿壁厚非均匀分布,在内壁处达到最大值;杨木导管爆破的最小蒸汽压强和温度分别为0.32MPa和133℃,射线薄壁细胞爆破的临界蒸汽压和温度分别为0.4MPa和140.2℃,木纤维屈服的临界压强和爆破压强分别为1.19MPa和2.3MPa,对应的屈服温度和爆破温度分别为180℃和206℃;杨木高强度微波预处理过程中,木材内部温度不均匀分布引起的热应变与内部快速失水引起的湿应变,是造成杨木纹孔膜、胞间层、薄壁细胞等细胞组织挤压、拉伸,甚至破坏,实现杨木微波爆破的最主要原因;裂纹首先出现在纹孔膜和复合胞问层处,再相继出现在射线薄壁细胞、导管和木纤维细胞壁上,且裂纹由细胞壁内表面向外壁扩展。
(1)揭示了超宽频率范围内杨木介电特性变化规律,构建了杨木介电常数、损耗因数与影响因子间的量化数学模型,确定了微波预处理过程中杨木试件的厚度范围:杨木介电常数和损耗因数随着含水率和温度的增加而增大,随着频率的升高而缓慢减小,当杨木含水率从0%增加到98.91%时,杨木介电常数最大可增加8.2倍,损耗因数最大可增加86.3倍;杨木介电特性存在各向异性,纵向介电常数和损耗因数大于横向,径向略大于弦向;含水率对杨木介电特性的影响最显著,温度次之,纹理方向最小:杨木介电特性数学模型拟合系数的平方都在0.90以上,能很好的模拟杨木不同纹理方向介电特性随含水率的变化;采用915MHz和2450MHz频率的微波对高含水率(100%左右)杨木进行预处理,试件厚度应分别控制在12cm和4cm以内。
(2)探明了高强度微波预处理条件对杨木温湿变特性的影响规律,并计算了杨木内部的微波场强:高强度微波预处理能使杨木温度迅速升高,最大升温速率可达3.03℃/s;杨木内部的温度分布存在不均匀性和复杂性,且不存在整体性固定分布模式的温度场;微波功率越大,升温速率越快,终了温度越高;微波辐射时间越长,恒温期越长,终了温度越高;初含水率越低、厚度越大,杨木内部温度分布越均匀;高强度微波预处理能显著降低杨木含水率,每千瓦微波能每小时能排除0.4~1.1蝇的水分,失水速率最大可达1.22%/s;提水率随着微波时间的增大而增大,随着初含水率的增大而减小;杨木内部的微波场强与含水率和温度有关,微波场强度随着温度升高而增大,随着含水率的增加而降低。
(3)探明了高强度微波预处理对杨木微观和宏观构造的影响规律,揭示了杨木高强度微波预处理过程中裂纹产生机理:微波预处理后,杨木横切面出现明显裂纹,且裂纹主要沿着木射线方向呈辐射状分布,裂纹长度、宽度不一;裂纹产生部位主要集中在木纤维间胞间层、导管与射线薄壁细胞胞间层、木纤维与射线薄壁细胞胞间层及导管、木纤维细胞壁的纹孔处;增大微波功率,延长微波时间,增加辐射次数是改善微波预处理材裂纹分布均匀性的有效措施;裂纹产生部位与细胞不同壁层的化学成分及微纤丝排列方向有关,木材胞间层木质素含量高、纤维含量少,纹孔周围细胞壁微纤丝角大,两者构成了细胞壁弱相结构,应力作用下易发生破坏;微波预处理过程中,细胞壁微纤丝角差异引起的干缩差异易形成细胞壁微裂纹。
(4)表征了杨木孔隙率分布,构建了杨木微观密度和微观含水率定量表征方程、水分非均匀分布下杨木高强度微波预处理热迁移模型,探明了微波预处理过程中热量的传递规律:杨木早晚材孔隙率最大相差47.5%,杨木微观密度随着孔隙率的增大而减小,微观含水率随着孔隙率的增大而增大,在不同水分饱和度状态下,杨木微观含水率差异最大可达59%;基于非匀质构建的微波预处理热迁移模型可以较为准确表征杨木水分非均匀分布对微波预处理过程中温度分布的影响,微波预处理过程中杨木内部温度差异高达98℃,饱和水蒸汽压差最大可达0.15MPa,热量从含水率为20%.60%的区域向含水率较高(120%以上)区域和含水率较低区域(20%以下)迁移。
(5)构建了杨木高强度微波爆破预处理预测模型,求解了微波爆破预处理临界压强和温度条件,揭示了微波爆破预处理机理:在杨木高强度微波预处理过程中,细胞壁处于三向应力状态(轴向应力、径向应力和周向应力),其中轴向应力在壁厚方向处处相等,周向应力和径向应力沿壁厚非均匀分布,在内壁处达到最大值;杨木导管爆破的最小蒸汽压强和温度分别为0.32MPa和133℃,射线薄壁细胞爆破的临界蒸汽压和温度分别为0.4MPa和140.2℃,木纤维屈服的临界压强和爆破压强分别为1.19MPa和2.3MPa,对应的屈服温度和爆破温度分别为180℃和206℃;杨木高强度微波预处理过程中,木材内部温度不均匀分布引起的热应变与内部快速失水引起的湿应变,是造成杨木纹孔膜、胞间层、薄壁细胞等细胞组织挤压、拉伸,甚至破坏,实现杨木微波爆破的最主要原因;裂纹首先出现在纹孔膜和复合胞问层处,再相继出现在射线薄壁细胞、导管和木纤维细胞壁上,且裂纹由细胞壁内表面向外壁扩展。