【摘 要】
:
非线性方程在实际应用中具有极其重要的意义,许多现实问题都可以转化为非线性方程进行最优求解。本文对非线性方程转化成的无约束优化问题进行了研究。最优化方法是在一些特定条件的限定下,求解目标函数极值的一类方法。但是其传统方法面临着计算复杂,迭代更新繁杂,运行速度不理想等缺陷。鉴于此,本文针对非线性方程导致的无约束优化问题,将非单调搜索技术以及自适应更新策略融入到经典优化方法中,提出了三种改进的优化算法。
论文部分内容阅读
非线性方程在实际应用中具有极其重要的意义,许多现实问题都可以转化为非线性方程进行最优求解。本文对非线性方程转化成的无约束优化问题进行了研究。最优化方法是在一些特定条件的限定下,求解目标函数极值的一类方法。但是其传统方法面临着计算复杂,迭代更新繁杂,运行速度不理想等缺陷。鉴于此,本文针对非线性方程导致的无约束优化问题,将非单调搜索技术以及自适应更新策略融入到经典优化方法中,提出了三种改进的优化算法。具体工作如下:第一,将非单调线搜索策略与不精确拟牛顿法相结合。与原有方法相比,新方法不需要精确计算B_k的值,只需满足一个特定的不等式来确定牛顿方向,从而有效地提高了运算效率。第二,将高效的自适应半径更新方法融入信赖域方法中,同时采用有限内存的BFGS更新公式代替原有的BFGS公式,利用少量的内存定义逆Hesse矩阵,极大降低了算法的计算复杂度。第三,基于传统信赖域框架,将一种新型非单调形式T_k融入线搜索以及信赖域结构中,形成一种改进的非单调信赖域算法,并在适当的条件下证明其具有全局收敛性。文章的最后对提出的三种新算法进行了总结与归纳,并对该课题的进一步研究做出了思考与展望。
其他文献
在过去十年中,期权引入对标的股票的影响一直是研究者争论的话题。根据样本时间、计量方法以及分析时间长度的不同,研究人员在不同的股票市场得出了相互矛盾的结果。本文旨在
液力变矩器是汽车上最重要的零部件之一,在提高车辆的自适应能力、通过路面能力、自动变速能力等方面具有巨大作用。本文介绍了一种基于LabVIEW软件的液力变矩器性能试验测控
铜绿假单胞菌是一种机会性致病病原体,临床上最常见的三大条件致病菌之一,是免疫受损个体和肺囊性纤维化患者主要致病因子。铜绿假单胞菌侵入肺上皮后从非褐藻胶产生菌株(非
由于我国能源分布不均,并且社会对用电量的需求日益增加,发展超特高压、大容量、远距离输电成为了必然趋势,故电力装备也面对着愈发复杂的绝缘要求。而纳米复合材料因为其制
由于环保的要求越来越高,寻找新型环保的替代制冷剂已迫在眉睫。氢氟烃(HFCs)和烷烃(HCs)是目前主要使用的制冷剂,然而大多数HF Cs的全球变暖潜能值(GWP)比较高,大量使用会引
随着科学技术的发展,环境污染和能源短缺等问题日益突出,急需开发绿色能源来取代传统资源。近些年来有机太阳能电池,因其具有大面积应用和制作柔性电池的潜力已经成为研究热点。作为吸光层的活性层材料是影响太阳能电池性能的关键因素。目前,基于本体异质结结构的有机太阳能电池能量转化效率已经超过了15%。其中D-A型给体聚合物PBDB-T作为给体材料在非富勒烯太阳能电池中表现出优异的性能。本论文以给体聚合物PBD
在现今的计算机工业与学术界中,软件系统的安全性是关注的重点之一。一方面,正向的软件代码分析已经不能完全满足要求,逆向的事件回放技术为软件系统安全调试提供了新的手段
第一部分成人B细胞性急性淋巴细胞白血病RAG1,RAG2表达情况及其临床意义目的:重组激活基因1(recombination activating gene 1,RAG1)编码的蛋白RAG1和重组激活基因2(recombin
GaN是一种宽禁带直接带隙Ⅲ族氮化物半导体材料(3.4 eV),因其具有优良的光学、电学性质,且化学和物理稳定性好,而被广泛应用于光电子和微电子器件等领域。另外,GaN材料热导率
哺乳动物卵母细胞的玻璃化冷冻保存技术,为家畜胚胎生物技术提供了卵子库,有利于濒危动物和珍稀野生动物遗传资源的长期保存,是维持物种多样性乃至人类生殖力保存的重要途径,