量子流体方程存在性与流体的无粘极限的若干研究

来源 :中国工程物理研究院 | 被引量 : 0次 | 上传用户:ilqiqi2010
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
量子力学是现代物理学的一个重要分支,主要研究微观粒子的运动.量子流体力学方程可以用来描述很多物理现象,如超导,超流,玻色-爱因斯坦凝聚,半导体等.本文的第一章我们主要介绍了本文所研究的几个流体力学的数学模型,并给出了其物理背景和研究现状.第二章主要介绍了几类量子流体方程组的光滑解的爆破问题.在2.1节我们首先证明了量子流体方程组(量子Euler方程)的光滑解的局部存在性,然后又证明了此光滑解一定会在有限时刻爆破.在2.2节我们得到了半空间中带有齐次滑移边界条件的量子流体方程组的光滑解的爆破.在2.3节,主要研究四个带粘性的量子流体方程组的光滑解的爆破问题.铁磁流体方程常常用来描述铁磁体的磁导率的耗散理论.第三章我们研究了二维周期区域上满足一定初值条件的粘性量子Navier-Stokes-Landau-Lifshitz-Maxwell方程组的有限能量弱解的整体存在性.粘性流体的无粘极限问题是流体力学中一类非常重要问题.本文第四章我们主要研究带有推广的滑移边界条件的不可压磁流体方程组的粘性消失极限.本文5.1节我们研究了两类可压缩粘性流体方程组(完全可压缩Navier-Stokes方程和等熵可压缩Navier-Stokes方程组)的光滑解的爆破.这里主要研究的是全空间的初值问题和半空间的带有齐次滑移边界条件的初边值问题.在5.2节,我们讨论了可以用来描述向列相液晶分子运动的可压缩Ericksen-Leslie模型的光滑解的爆破问题.我们得到了其全空间的初值问题,半空间带有齐次滑移边界条件的初边值问题,单位球上的初边值问题的光滑解的爆破.第六章我们研究了二维周期区域上的非齐次不可压Navier-Stokes-Landau-Lifshitz方程组的弱解的整体存在性和唯一性.最后我们对本文的工作做了总结,并给出了未来工作的重点.
其他文献
发展风电是我国深入推进能源生产和消费革命、促进大气污染防治的重要手段。近十多年来,凭借丰富的风资源、政策导向与技术推动,我国风电装机容量取得了飞速增长。为捕获更多
近年,国际贸易发展迅速,全球经济一体化进程加快,企业对通关效率和贸易成本更为敏感,发达国家纷纷建立了“单一窗口”以简化通关流程,提高通关效率,节省贸易成本。在当前国际
悬臂灌注法施工的预应力混凝土连续梁桥在施工过程中要经历各悬臂节段施工、合拢及体系转换等一系列复杂过程,最终成桥时桥梁的几何线形和内力与各节段的施工方案和工艺有着