大矢跨比钢箱提篮拱桥提升施工技术及稳定性研究

来源 :重庆交通大学 | 被引量 : 0次 | 上传用户:acb13202
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着相关技术和理论的发展,使得桥梁结构形式越来越新颖,但同时也提高了施工难度。本文所依托的工程,采用了提篮拱和大矢跨比的结构形式,造成施工的难度大大增加。使得本桥大拱的施工方案从最初的缆索吊装法,到原位支架拼装法,最后采用中拱段低位拼装结合整体提升法施工,前后历时一年多,造成施工工期和成本大大增加。因此本文综合考虑各个因素对比研究,确定出最优的施工方案。之后针对其中运用的一些关键性问题进行研究,保证施工过程的顺利进行。对于钢拱桥必须考虑的稳定性问题进行了研究,先分析了施工阶段的稳定性,之后通过改变相关的设计参数,研究了成桥阶段在恒载作用下稳定性的变化规律。希望本文的相关研究可以为该类桥梁的设计提供参考,并为整体提升法的推广起到促进作用。主要研究内容如下:(1)主要简述了后面拟提出的两种施工方案,从施工的难度、安全、质量、工期和经济性5个方面,对比分析了大拱的施工方法,确定出大拱最佳的施工方案。(2)在支架法施工中,结合相关的资料,经过计算合理地选择了小节段拱肋安装时的起吊设备。通过仿真分析,研究了大小拱施工时结构的状态,并分析了水上栈桥重要组成构件稳定性和承载力。最后,对中拱段支架卸载的过程进行了研究,通过合理地约束置换,求出了较为准确的千斤顶顶升力。(3)根据提升物吊点与结构重心的相关原则,并考虑提升物的自重,确定出合理的吊点数量和布置位置。采用力法对提升中的不同步效应进行控制,研究该方法能否降低不同步效应对结构的影响,并对提升吊点失效的工况进行了研究。按照《重型结构和设备整体提升技术规范》对提升支架进行验算,分析结构的变形、应力和钢管桩的承载力、稳定性。同时建立提升吊点处拱肋的局部模型,重点研究了此时的应力集中现象,并且提出改善措施来减少此处拱肋的应力集中现象。(4)分析了施工阶段提升拱肋和支架结构的稳定性,并对本桥成桥阶段进行线弹性分析,对比恒载和恒载+活载作用下结构稳定系数的差值,分析活载影响效应的大小。之后,在恒载作用下,研究结构设计参数对成桥稳定性的影响。最后,通过将吊杆用等效节点荷载替代研究了吊杆非保向力对拱桥结构稳定性的影响。
其他文献
作为工业制造领域的基础材料,铝型材的表面质量会直接影响轨道交通、机械制造、航天航空等领域工业产品的可靠性与使用寿命。然而,由于生产环境的复杂性与加工设备的局限性,铝型材表面不可避免会产生缺陷。为了确保铝型材相关产品的长久使用,对其表面缺陷的及时检测具有重要意义。这一方面有助于延长产品的使用寿命。另一方面有助于发现生产薄弱环节,降低因铝型材表面缺陷带来的重大经济损失。目前,传统的铝型材表面缺陷检测方
随着世界经济的快速发展,化石能源的过度开采和消耗愈加严重,由此产生的环境问题也越来越引起人们的重视。科技的进步也推动了新能源、新材料的发展。如今,由锂离子电池供能的电动汽车正在逐渐普及,为化石能源的合理利用及环境保护起到了积极的促进作用。但锂离子电池普遍存在能量密度较低、循环性能差的问题。相比锂离子电池,锂硫电池具有更高的能量密度,但也存在着硫单质导电性差、充放电过程中活性物质体积膨胀大、多硫化物
近年来,随着我国高速公路桥梁建设的快速发展,后张拉法混凝土梁在桥梁系统建设中大量使用,预应力混凝土桥梁占据了我国新建桥梁的绝大部分。预应力压浆波纹管是混凝土桥梁的重要组成部分,压浆波纹管的不密实将导致桥梁预应力的损失甚至丧失,从而导致桥梁出现裂纹甚至倒塌情况;因此预应力压浆波纹管密实度的检测对于确保预应力管道压浆质量尤为重要,本文基于超声透射法结合试验梁进行了压浆波纹管密实度检测,并开展了如下的研
随着制造业水平的不断提高,工业机器人由于具有工作可靠、工作效率高等优势,被广泛应用于制造业中。谐波减速器具有传动比大、传动精度高等优点,被广泛应用于工业机器人末端关节。作为工业机器人的核心部件,谐波减速器高精度运行保证了工业机器人的精准动作,其健康状态直接决定了工业机器人的运行精度。因此对谐波减速器进行健康状态评估是必要的。工业机器人机械臂通常作周期性往复式运动,同时往复运动中频繁的启动与加、减速
液压系统作为现代工业重要的控制与传动形式,已经在汽车制造、航空航天与国防装备等领域具有不可替代的作用。随着液压系统本身和其工作环境的日趋复杂,液压系统能否稳定工作就变得愈发重要。而液压泵作为液压系统的核心部件,保证其正常工作,并对其泄漏状态做出及时的诊断就显得意义重大。本文以液压信号为研究对象,分别从机器学习与深度学习的方面对液压泵泄漏状态智能识别技术的相关算法进行了研究。依据液压信号的特征提取、
由于钢筋混凝土拱桥在山区峡谷等地形条件下有着得天独厚的优势,因此,我国山区公路桥梁常以钢筋混凝土拱桥作为其桥型。近年来,国内采用悬臂浇筑法在西南山区建成了多座钢筋混凝土拱桥,此种方法能使拱圈整体性好、线形美观。然而,随着跨径的增大,拱圈悬臂浇筑长度增长,使得扣索力值增大,从而增加了施工风险和扣锚系统的设计难度。为此,本文以重庆市教委科学技术研究项目“300m级悬臂浇筑钢筋混凝土拱桥设计施工关键技术
由于化石燃料的储量有限以及燃料排放相关的环境问题,汽车行业正在朝轻量化方向发展,以减少燃料消耗。而镁合金的使用可以在满足汽车结构强度的前提下显著地减轻汽车的重量,并且还具有巨大的回收潜力,因而很有希望解决环境污染和资源匮乏等问题。但不幸的是,镁合金具有很高的化学活性,即使在室温下也很容易被腐蚀,使其镁合金在实际应用中受到诸多限制。所以,当务之急是寻找一种防护涂层来提高镁合金的耐蚀性能,从而扩大镁合
屈曲约束支撑(Buckling-restrained braces,BRBs)作为一种金属耗能元件,不仅起到普通支撑的作用,而且滞回行为稳定,耗能强,低周疲劳性好。近年来,屈曲约束支撑逐渐成为桥梁工程减震的热点,有很好的发展潜力和应用前景。为了满足桥梁抗震变形大的特点,屈曲约束支撑需要增大有效屈服长度,同时满足耗能性强的要求,结合理论分析,本文提出一种长行程屈曲约束支撑,在支撑总尺寸不变的情况下,
在我国半干寒地区,区域降雨量少且多集中于夏季,受冻融循环作用等外部环境因素和人类工程活动的影响,公路在长期运营过程中出现了各种严重病害,影响行车安全性和舒适性。针对半干寒地区病害特点,分析其病害机理并研究控制措施,对保证公路长期安全运营,是非常有必要的。论文依托于国家重点研发计划项目“红层地区典型地质灾害失稳机理与新型防治方法技术研究”,以“鄂尔多斯市某运营公路路面沉陷专项治理工程”为实例,在前期
随着人们对环境污染问题越来越关注,镁合金材料成为了降低能耗,保护环境、可持续发展的新型材料,镁合金板料的成形工艺种类也变得越来越广泛。单点渐进成形技术是一种新型的板料成形工艺,作为一种无模或只需使用简单模具的成形技术,弥补了冲压成形技术在制造模具过程中的生产周期长、制造成本高和制件精度不高的缺点,能在短间内制作不同形状的制件,适合个性化生产制件和小批量柔性的生产。因此,镁合金板的单点渐进成形工艺得