面向城市智能监控系统的异常行为预警关键技术研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:officerkaka
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着智能摄像头的广泛应用,逐渐完备的智能监控系统在银行,高铁站,机场,交通要道,街头巷尾等城市中的重要公共区域都有着大量部署。这对交通事故,抢劫,偷盗,纵火,枪击,虐待等真实监控场景中的异常行为的检测与分析起着重大积极作用。然而,当前对视频的异常检测与分析仍然主要由人力完成,随着视频数据的广泛采集,由人力来完成视频主要分析已经越来越不现实。因此,近几年,针对人类异常行为检测的研究也成为了计算机视觉领域最为活跃的方向之一。然而,由于城市治安场景下的异常标注数据缺乏,其异常行为建模困难等原因,当前在异常行为预警的关键技术研究上仍然进展缓慢,面临诸多困难。本文正是针对异常标注缺乏,行为建模复杂等难点,利用图模型使相对充足的正常标签可以对噪声标签进行纠正,并在异常视频上进行时序定位,降低在识别时的建模复杂性来提高预警系统的综合性能。本文基于当前研究进展与潜在问题的深入分析,在异常行为预警系统的异常行为检测,异常行为时序定位与异常行为识别三方面的关键性技术进行了深入研究。在异常行为检测技术方面,从弱监督学习的视角,使用图卷积网络进行噪声标签纠正,充分利用了正常行为标注去弥补异常标注缺乏的问题,从而达到了良好的综合性能,证实了图卷积在视频理解上是一个值得尝试的方向;在异常行为时序定位方面,本文基于异常行为检测后得到的异常视频的帧级异常分数预测进行了时序定位的研究,分割出仅包含异常行为的视频片段用于进一步的异常行为视频识别;最后,本文基于三类主流的行为分类器结合时序定位技术进行了异常行为识别的研究,得到了远超当前最好性能的9个百分点的识别性能,并在三类主流行为分类网络上提出了UCF-Crime数据集在行为识别数据划分上的新基线。将本文研究的异常行为检测,异常行为时序定位,异常行为分类识别这三方面的关键技术相组合,正好可以构建一个综合性能显著提高后的端到端异常行为预警系统。
其他文献
大型托卡马克放电过程中,一些磁流体不稳定性引发的破裂将会导致等离子体放电终止。等离子体中大量热能和磁能将在毫秒量级内快速损失,这会对装置造成严重的危害。这些危害主要包括三方面:装置壁和偏滤器靶板的热负荷、真空室壁的电磁应力以及逃逸电流。避免和缓解等离子体破裂期间产生的高通量高能逃逸电子一直是破裂缓解的重要课题。在大量气体注入(Massive Gas Injection,MGI)系统主动触发等离子体
基于微镜阵列的光场成像作为一种三维成像模式,迄今为止已诞生多种结构形态。目前工业界最新的光场相机,通过配置多焦距定焦微镜阵列构成。不同焦距的微镜结构,负责对不同物空间深度处的目标执行清晰成像,达到扩展景深和解析深度目的,其三维成像效能仍极有限且难以与目前成熟的平面成像模式兼容。液晶微镜阵列作为一种可替代定焦微镜执行电控调焦的微纳控光器件,可用于执行光场成像从而展现更大的景深和独特的层析化物空间能力
研究目的:分析和鉴定COL3A1基因突变与散发性胸主动脉夹层(STAD)发病的相关性。研究方法:本研究采用两阶段病例对照实验,通过高通量测序技术,探索经典致主动脉夹层的基因突变在散发性胸主动脉夹层人群中的分布。第一阶段纳入223例STAD患者和414例健康对照者,进行全外显子组测序,经过位点质量过滤、人群结构分析、亲缘关系分析和祖源关系分析得到高质量的基因变异位点后,筛选和评估29个经典致病基因的
近年来,深度学习在计算机视觉识别方面取得了很大的进展,尤其是在分类任务方面取得了显著的突破。深度神经网络的结构复杂性赋予了模型强表达能力,但同时也带来了可解释性不强的问题,易于受到对抗样本的干扰输出错误的结果。对抗样本是人为向输入样本中添加细微噪声形成的,对抗样本的提出引发了人们对深度学习安全问题的关注,如何有效地生成更自然的对抗样本受到了研究人员的广泛关注,研究对抗样本有助于促进深度学习安全领域
随着环保的概念越来越被世界各国接受,风能作为一种储量丰富的清洁能源近年来得到了长足的发展。目前风机的图像检测通常基于红外图像和可见光图像,但其成像特点的原因不能很好地获取目标的三维信息。激光雷达根据其成像原理,可以较为精确地捕获目标的三维信息,为风机检测带来新的思路和探测手段。盖革APD面阵激光雷达具有高帧频、探测距离远、探测精度高、体积小等优点。同时也存在着激光雷达获取的原始距离像信噪比低的缺点
目的:研究一种分子显像纳米药物TMVP1-ICG-NP在识别肿瘤转移前哨淋巴结中的效果。TMVP1是本实验利用细菌鞭毛肽库技术筛选出来的序列为LARGR的多肽,能够特异性结合表达于肿瘤转移前哨淋巴结中的新生淋巴管的受体分子VEGFR-3。本研究利用TMVP1修饰的聚合物纳米材料搭载近红外荧光染料吲哚菁绿(ICG),以改善ICG的血液循环稳定性并使其获得肿瘤转移靶向显像的能力,探究其对肿瘤转移前哨淋
研究表面等离激元与激子的相互作用在纳米尺寸非线性光学器件、量子信息传输计算和偏振激光器等领域具有重要的应用前景,研究人员通过透射、反射和暗场散射光谱对贵金属纳米腔与过渡金属二硫化物产生的强耦合现象进行了充分研究。近年来,基于纳腔的强耦合特性表征的主要方式是暗场散射光谱,然而通过该方式难以准确区分强耦合与增强吸收或Fano共振等弱耦合现象。光致发光光谱能够直接揭示强耦合下能级劈裂,因而荧光光谱的模式
目前,实现汽车轻量化已成为整个汽车行业所关注的重点,要求结构件在轻量化的同时其强度也要满足要求。Al-Zn-Mg-Cu合金是室温下强度最高的铝合金,自然成为实现轻量化的首选材料。但是Al-Zn-Mg-Cu合金具有合金化程度高、凝固温度范围宽等特点,导致铸件极易产生缩孔、气孔和热裂纹等缺陷,铸造性能很差。因此,Al-Zn-Mg-Cu合金铸锭一般还需要塑性加工以减少缺陷。目前,Al-Zn-Mg-Cu合
生物医学成像技术为研究生物组织结构和疾病机理提供了有力的工具。光学显微镜可达亚细胞的分辨率,结合日益成熟的标记技术,适合用于研究微米分辨率下厘米尺度大体积样本的生物学问题。申请人所在课题组发展出的深低温显微光学切片断层成像系统,利用液氮制造-196℃的深低温环境,结合机械铣削的方式打破成像深度的限制,以光学成像的方法获得冷冻环境中的样本三维结构和代谢信息。深低温的固定和包埋方法使生物样本的原始形态
环行器端口中金属丝的传统检测方式是人工检测,其存在重复性差、速度慢等缺点。人工检测无法适应现代化的工厂流水线。基于机器视觉的缺陷检测系统相比人工检测,具有更高的检测重复性、速度以及自动化等优点。于是,本文就基于机器视觉的环行器端口中金属丝检测系统,开展系统设计与算法研究。本文最先对系统的打光光源、打光方式、图像采集模块以及运动控制模块进行了研究。采用白色LED光源,对环行器端口分别采用了正向打光与