论文部分内容阅读
真菌α-淀粉酶被广泛应用于麦芽糖浆生产工业,但其热稳定性和耐酸性普遍较差,在制糖工艺中增加了由于酶活力损失而引起的追加生产成本,并且糖液在长时间的处理过程中容易被嗜温微生物污染而变质。因此,提高真菌α-淀粉酶的热稳定性和耐酸性将有助于改善制糖工艺以减少糖液感染嗜温微生物的几率并降低生产成本。本文以来源于米根霉的α-淀粉酶(ROAmy)为研究对象,通过蛋白质结构建模、序列比对及生物信息学分析等手段进行定向改造,从而提高其热稳定性和耐酸性。利用乳酸克鲁维酵母进行突变体的表达,完成理化性质及结构功能分析,提出与ROAmy的p H和温度耐受性相关氨基酸结构。主要研究内容如下:(1)将ROAmy与耐热耐酸性以及常温中性真菌α-淀粉酶进行同源序列比对,根据比对结果以及蛋白质结构分析构建了7个突变体。结果表明突变体A144Y、V174R、T253E和I276P的热稳定性和p H稳定性在一定程度上有所提高。其中,相比于原酶,突变体V174R在55℃下的热失活半衰期(t1/2)约提高了2.52倍,且其在p H 4.5下的t1/2约提高了1.55倍。此外,突变体A144Y、T253E和I276P对可溶性淀粉的催化效率(kcat/Km)相比于原酶分别约提高了61.18%、65.50%和24.25%。通过蛋白结构功能比较分析,发现蛋白质表面亲水作用的增强、氢键数目的增加、盐键的形成以及柔性区域刚性的增强,可能是突变体热稳定性和耐酸性增强的主要原因。这也表明了A144、V174、T253和I276可能是ROAmy中与p H和温度耐受性相关的氨基酸残基。(2)基于酶蛋白B-factor分析和分子动力学模拟,利用重叠PCR技术分别对ROAmy中的3个氨基酸残基G128,K269和G393进行了单点突变及组合突变。结果表明,所获得的7个突变体均比原酶具有更好的热稳定性,其中效果最好的为组合突变体G128L/K269L/G393P,其在55℃下的热失活半衰期(t1/2)约为原酶的5.63倍。同时,该突变体的最适温度由50℃提高到了65℃,最大反应速率(Vmax)和催化效率(kcat/Km)分别提高了65.38%和99.86%。通过蛋白结构功能比较分析,发现氢键数目的增多或脯氨酸在特殊位置中的引入可能是突变体热稳定性得到提高的主要因素。G128,K269和G393可能是ROAmy中与耐热性相关的关键氨基酸残基。(3)将ROAmy与耐热耐酸黑曲霉α-淀粉酶(PDB code:2aaa)的3-D结构进行分子重叠,发现黑曲霉α-淀粉酶蛋白结构中存在着二硫键,而ROAmy的相应位置则没有二硫键的存在,研究表明二硫键在蛋白质结构稳定性中具有重要作用。因此通过蛋白质结构建模以及氨基酸序列分析,在ROAmy中的相应位置引入二硫键,构建了3个突变体。结果表明突变体的热稳定性均得到了不同程度的提高,相比于原酶,突变体ROAmy C30-C36在55℃下的热失活半衰期(t1/2)约提高了2.31倍。同时,以上突变体在p H 3.5~4.5的条件下表现出更高的催化活力和稳定性。此外,突变体ROAmy C30-C36和ROAmy C230-C273的催化效率(kcat/Km)相比于原酶分别约提高了20.17%和37.19%。实验表明了突变体具有更好的热稳定性和耐酸性可能是由于二硫键的引入增强了蛋白质局部结构的稳定性。