【摘 要】
:
近年来,激光冷却和囚禁的光学原子钟精度已经达到了10-19,它在计量标准、探索物理常数的变化以及导航等方面有着非常重要的应用。Ba+离子的能级结构相对比较简单,其亚稳态5d3/2,5/2的寿命很长,这些性质使得Ba+离子成为了原子钟实验、量子信息技术以及原子宇称不守恒实验非常好的候选元素之一。理论上,我们迫切需要提供高精度的Ba+离子基本结构参数以及极化率,为相关实验提供理论数据支撑。本文利用相对
【基金项目】
:
国家自然科学基金项目(批准号:11774292, 11874051, 11864036, and 11804280.);
论文部分内容阅读
近年来,激光冷却和囚禁的光学原子钟精度已经达到了10-19,它在计量标准、探索物理常数的变化以及导航等方面有着非常重要的应用。Ba+离子的能级结构相对比较简单,其亚稳态5d3/2,5/2的寿命很长,这些性质使得Ba+离子成为了原子钟实验、量子信息技术以及原子宇称不守恒实验非常好的候选元素之一。理论上,我们迫切需要提供高精度的Ba+离子基本结构参数以及极化率,为相关实验提供理论数据支撑。本文利用相对论组态相互作用模型势(RCICP)方法,详细计算了高精度的Ba+离子波函数、能级以及电偶极约化矩阵元等参数,利用这些参数进一步计算了Ba+离子6s1/2、6p1/2,3/2和5d3/2,5/2态的静态和动态极化率,最后确定了基态6s1/2的Tune-out波长以及6s1/2→6p1/2,3/2和6s1/2→5d3/2,5/2跃迁的Magic波长。通过详细分析这些Tune-out波长和Magic波长,我们发现:1.对于基态6s1/2的Tune-out波长,只有一条在可见光波段(480.658(18)nm),该波长位于6s1/2→6p3/2和6s1/2→6p1/2共振跃迁之间,而且该Tune-out波长主要是6s1/2→6p3/2和6s1/2→6p1/2共振跃迁相互抵消所产生的。因此,我们建议实验上测量480.658(18)nm的Tune-out波长可以反推得到高精度的振子强度比f6s1/2→6p3/2/f6s1/2→6p1/2。如果实验测量精度可以达到0.001 nm,那么由它所确定的6s1/2→6p3/2和6s1/2→6p1/2跃迁振子强度比的不确定度将低于0.005%,这个不确定度要比已有实验结果的精度高一个数量级。2.对于钟跃迁6s1/2→5d5/2,理论上只有两条Magic波长在可见光波段,分别是652.8(1.0)nm和480.78(2)nm。其中,652.8(1.0)nm的Magic波长与最新的实验测量结果652.913(4)nm[Phys.Rev.A 101,042507(2020)]符合得非常好。除此之外,在Magic波长处动态极化率主要由少数跃迁的贡献决定,因此,利用实验上高精度的Magic波长可以确定激发态能级之间的跃迁矩阵元或振子强度。例如,我们利用实验上已经测量得到的6s1/2→5d5/2跃迁的Magic波长652.913(4)nm,确定了5d5/2→4f7/2跃迁的振子强度为0.466(15)。另外,我们还建议实验上精确测量6s1/2→5d3/2跃迁的Magic波长可以用来确定振子强度f5d3/2→4f5/2,实验上高精度地测量6s1/2→6p3/2跃迁416 nm附近的Magic波长可以用来确定振子强度比f6p3/2→6d5/2/f6p3/2→6d3/2。
其他文献
多元素激光等离子体已广泛应用于示踪元素状态诊断、脉冲激光沉积(PLD)技术和激光诱导击穿光谱(LIBS)技术等领域。多元素激光等离子体具有比单元素情况更为复杂的辐射和动力学演化过程。目前,受实验瞬态检测条件和理论分析方法的限制,人们对其演化过程中的微观物理过程和演化机制尚不是非常清楚。因此,对于多元素激光等离子体的实验和理论研究将有助于人们对其微观演化机制的深入认识和为上述领域的应用提供数据和方法
离子与原子碰撞反应的研究是当前原子物理研究领域中一个十分重要的课题,不仅可以用来解释多体动力学问题,而且还可对等离子体物理、材料改性、天体物理等相关领域的研究提供重要的依据。本论文基于中国科学院近代物理研究所的反应显微成像谱仪装置,对2.1ke V/u-8.6 ke V/u能量范围内的N6+离子与He碰撞反应进行了系统测量,获得了单电子俘获和双电子转移过程中的态选择截面和角微分截面,同时研究了6k
近年来低温容性耦合等离子体广泛地应用于工业,尤其是在微电子工业领域,相关技术日渐成熟。容性耦合等离子的放电特性是推动大规模的工业应用的关键因素,而基于放电特性的复杂性,研究清楚各种情况下的放电特性显得尤为重要。本文通过采集发射光谱和PIC/MCC数值模拟两种方法,讨论了在四个驱动频率下随着功率和气压的增加,容性耦合氩等离子体的放电特性。在四个不同频率下(13.56 MHz、40.68 MHz、94
土壤盐渍化是指由于土壤含盐量过高,从而导致作物无法正常生长、发育的现象;甚至已经有部分土地从耕地变为荒地,严重影响了土地种植以及粮食产量。合理整治土壤盐渍化问题已经刻不容缓,而解决问题的第一步就是需要监测盐渍化的整体情况,从而达到统筹规划的目的。无人机技术在获取遥感信息时能够取得快速、方便、快捷的效果,且能够获得大面积的图像,从而实现高效运作,达到有效检测,实时控制,最终能够通过实时监测提出相应的
本学位论文主要讨论了Sobolev型分数阶发展方程非局部问题的可解性与可控性,其中Dtα是α∈(1,2)阶Riemann-Liouville型分数阶导数,A和E是定义在Banach空间上的闭线性算子,u是控制函数,B是有界线性算子.主要工作如下:1.在非紧性测度条件下,运用Sadovskii不动点定理和预解算子理论研究了Sobolev型分数阶发展方程非局部问题(I)mild解的存在性和精确可控性.
基于多组态Dirac-Hartree-Fock方法,精确的计算了中性氧原子亚稳态2p~33s~5S2的线强,跃迁几率,分支比。考虑了最内层电子关联效应(core-core)、内层电子与价层电子(core-价)关联效应和价层电子关联效应,并将Breit相互作用,QED效应作为微扰处理。给出了由剩余电子相关效应评估的不确定度。结果表明,core相关效应对精确计算p~3s构型中~3S和~5S的能级分裂有
盐渍化会导致粮食减产、土壤退化、生态脆弱,大大制约了该地区的土地的可持续利用及农业发展。高光谱遥感技术可以有效反映地物信息。因此可以利用高光谱遥感监测土壤水盐信息,为盐渍化土壤管理提供依据。将解放闸灌域作为研究区。在研究区内,采集盐渍化差异的土样,并得到土样的含水率(SMC)、含盐量(SSC)及主要盐基离子含量(Na+、Mg2+、K+、Ca2+、HCO3-、CO32-、Cl-、SO42-)等数据。
黄土高原水土流失问题对我国生态环境、防洪灌溉、粮食红线和饮水保源等安全的确保具有极其重要的意义。本文采用修正后的通用土壤流失方程RUSLE模型对选取的黄土高原综合治理5个小流域,以2016年遥感影像为基础,进行了15m、30m、90m三种不同分辨率土壤侵蚀强度计算,利用多重分形理论构建了高程、土地利用类型、坡度和植被覆盖的多重分形谱,结合地理探测器选取土地利用类型、坡度、植被覆盖三个因子对土壤侵蚀
近年来,随着激光技术和激光器的不断发展和完善,有关原子稳定化现象的研究成为了一个热点。受激光场的影响,原子的电离通常会与激光强度成正相关,但是当激光强度增加到某一阈值时,其电离几率将不再增加,反而先减小后增加,这一现象被称为原子的稳定化现象。本文利用角动量l依赖的模型势,通过含时伪谱法数值求解三维含时薛定谔方程来研究碱金属Li、K、Rb原子的动力学稳定化。主要内容如下:1.通过反复求解三维定态Sc
极化率描述的是当原子处在外电场中时,电子云偏离正常分布程度的物理量。极化率在原子宇称不守恒、原子光钟、量子计算、长程相互作用和玻色-爱因斯坦凝聚等研究领域都有着极其重要的应用价值。人们利用多体微扰理论、组态相互作用、相对论耦合簇理论等方法已经对单价电子和双价电子(第IA族和第IIA族)原子的极化率进行了深入的研究。但是对于多个价电子的复杂原子,在处理电子关联效应时非常困难,相关的研究比较少。因此,