自电泳的微米马达强烈吸附于固体界面

来源 :第十一届全国软物质与生命物质物理学术会议 | 被引量 : 0次 | 上传用户:zkk81950868
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  人工合成的自驱动微米马达是一种消耗局域的能量转化为自身运动的一种微型装置,它们在药物输运等方面有很多潜在的应用。双金属马达通过电化学分解环境中的过氧化氢,在马达周围创造了一个不均匀的氢离子空间分布,电荷分布的不均匀形成了局域的电场,表面带负电的马达就在这种电场中发生电泳运动。由于使马达电泳的电场是由马达自身产生的,因此称此种驱动机理为自电泳。这些马达往往是在各种各样的边界边上运动的,所以理解边界如何影响马达的运动是非常重要的。我们使用全息显微观测的手段直接观察了在载玻片上边运动的马达和底面的倾角现象,通过进一步实验和模拟研究了双金属马达在固体边界运动的特点。我们发现马达在边界附近运动时,静电力和流体力的平衡导致马达吸附在边界附近运动;另外力矩平衡使得马达在运动时和边界呈现一个稳定的夹角,影响马达和边界夹角的一些因素也被揭示出来。通过在水平放置的显微镜装置进行的实验,我们研究了重力如何影响马达的运动,验证了马达在边界附近受力平衡和力矩平衡的计算结果。
其他文献
DNA 不仅是遗传信息的载体,还可以被利用于设计胶体颗粒之间的相互作用。可以将末端为互补的DNA 单链的两种接枝包裹到胶体颗粒表面,通过设计DNA 单链的碱基序列、接枝的长度、接枝的密度等等来控制颗粒之间的相互作用,实现复杂的自组装结构。最近,有研究者提出用可移动的DNA 来包裹的胶体颗粒,这样可以不用高接枝密度就能缓和颗粒运动的动力学壁垒,而且允许不用打补丁就实现配位数的控制。然而,这个新颖的系
Zika virus(ZIKV)recently outbreaking from 2015 to 2016 over Americas has attracted a global health concerns.As a member of family of Flaviviridae,zika virus a positive-sense single-stranded RNA virus
由于可以自组装形成多种介观有序结构,嵌段共聚物在实验、模拟以及理论领域都受到了广泛的研究兴趣[1-2].已经知道,最简单的AB型两嵌段共聚物可以很容易形成六角柱状相结构.但是体系中通常都是小组分(体积分数f<0.5)嵌段形成柱,大组分嵌段(f>0.5)形成填充基质.在此之前,韩国的Jin Kon Kim教授课题组采用AB(PS-P2VP)和AC(PS-PHS)混合体系得到了高度不对称层状相(层厚度
Tumor suppressor p53,as a transcription factor,regulates the expression of a series of genes to prevent cells from becoming cancerous.It was reported that p53 is linked to more than 50%of human cancer
会议
在自然界与工程领域存在大量形式各异的复杂流体系统(常温常压下的固体材料在爆轰或强冲击下也表现出复杂的流动行为)。物理建模与算法设计是数值实验研究中缺一不可的两个环节。物理建模层面的误差是无法通过算法精度提高来弥补的。本报告从物理学角度思考各种不同尺度、不同粗粒化程度物理建模之间的区别与互补。宏观流动层面的非平衡(HNE,Hydrodynamic Non-Equilibrium)通常使用对应质量守恒
我们采用数值计算的方法来探究两嵌段共聚物薄膜柱状相在正弦波状衬底上三种可能取向的相对稳定性。由于衬底是沿着单一方向波动的,因此柱状相可以与衬底平行或者垂直于衬底,其中平行于衬底的柱状相又可分为柱状相长轴方向沿波纹沟槽或垂直于波纹沟槽两种情况。利用自洽场理论,我们研究了衬底粗糙度和表面偏好对这三种取向之间相变的影响,衬底粗糙度通过改变正弦波状衬底的周期和振幅确定,表面偏好指的是衬底对两嵌段共聚物A
Solvent vapor annealing(SVA)is known to be a simple,low-cost and highly efficient way to annihilate defects in diblock copolymer(BCP)thin films and it facilitates the formation of highly ordered micro
细胞骨架对细胞内物质运输,细胞形态维持,细胞分裂分化等生命活动起着关键作用.Actin 微丝是细胞骨架的重要部分.作为由肌动蛋白(G-actin)组装形成的聚合物,微丝在细胞中的聚集和解离受到多个蛋白质分子的调控[1].其中,Tβ4 和Profilin 是调控Actin 微丝生长的两个重要蛋白质分子.在细胞中,肌动蛋白通常和profilin,Tβ4 等一些调控蛋白结合,从而使得肌动蛋白能够以游离态
活性物质是由自驱动粒子组成的,能将其他形式的能量(生物能,化学能等)转化为自身机械运动的动能。在许多活性物质系统中,例如细菌,微管等,组成单元是细长的,因此能够出现局域的向列相序,这类系统被命名为活性液晶。在过去十年中,活力液晶吸引了很多实验物理学家[1]和理论物理学家[2,3]的关注。然而,尽管前人在此类课题上已经付出了大量努力,实验测量与理论模型还没有做到过系统且完整的定量比对。之所以出现这一
Recently,a passive chain embedded in a fluid of active Brownian particles(ABPs),which can bring a non-equilibrium fluctuation to the chain,has been st.udied by various computer simulations,which found