论文部分内容阅读
针对灰色GM(1,1)预测模型提高精度的问题,提出了新的背景值优化公式代替传统的背景值优化公式,再进行边值修正的方法.该方法采用新的背景值优化公式求出紧邻均值生成序列,并使用均方误差和最小准则,针对原始序列和生成序列进行边值的修正.通过对优化后的模型实证测算,验证了修正后的模型在提高预测精度上的可行性和有效性.
In order to improve the accuracy of the gray GM (1,1) prediction model, a new method of background value optimization is proposed instead of the traditional background value optimization method, and then the method of edge value correction is proposed. The new method of background value optimization The mean value is generated next to the sequence and the mean square error and the minimum criterion are used to modify the original sequence and the generated sequence by using the value of the modified model.After the empirical calculation of the optimized model, the feasibility of the revised model in predicting the accuracy of the prediction is verified. Effectiveness.