论文部分内容阅读
基于高速公路交通量短时变化的非线性、不确定性和复杂性,利用支持向量回归模型,提出一种核函数切换的预测方法.首先,通过历史数据构建不同核函数的支持向量回归模型并对历史数据进行拟合,根据拟合的误差确定不同时刻对应的最优核函数类别;然后根据历史数据及确定的不同时刻的核函数类别训练支持向量分类机;最后利用支持向量分类机确定预测时刻最优的核函数类别,选取相应的支持向量回归模型进行预测.实例分析表明,与传统的支持向量回归模型相比,含核函数切换的预测方法预测精度较高,且具有较好的鲁棒性.