论文部分内容阅读
This paper presents a rational basis to model the transport of suspended sediment. The looseboundary condition for 3D models and the adjustment coefficients for both the depth-integrated 2D and laterally integrated 1D models are treated comprehensively. A combination of Dirichlet and Neumann conditions is proposed as the loose-boundary condition. The adjustment coefficient for 2D models is obtained on the basis of the proposed boundary condition and analytical solutions developed for some simple cases of non-equilibrium transport of sediment in uniform flows. The adjustment coefficient for 1D models for natural rivers is further obtained from lateral integration. Comparisons with analytical solutions and a considerable amount of laboratory and prototype data show that mathematical models developed along the proposed line of attack would well simulate the transport of suspended sediment in practical problems.