论文部分内容阅读
为了更好的对残缺文档进行分类,本文以基于支持向量机的文本分类方法(SVM)和卡方统计量(Chi--Square)的文本特征提取方法为背景,提出了有监督学习模式下的两种文本特征恢复算法以及在此基础上进行残缺文本分类的新方案。与传统的直接分类方案相较,该方案在分类前通过预先对文本中残缺词恢复,实现了残缺文本的部分特征恢复。实验表明,相较于传统方法,该方案在低残缺率下,对文本分类的影响不大;在高残缺率下,该方案能得到较好的分类效果。