论文部分内容阅读
传统的分类算法在处理不均衡样本数据时,分类器预测倾向于多数类,样本数量少的类别分类误差大。针对该问题,提出一种基于聚类和遗传交叉的少数类样本上采样方法,通过K-means算法将少数类样本聚类分组,在每个聚类内使用遗传交叉获取新样本,并进行有效性验证。基于K-最近邻及支持向量机分类器的实验结果证明了该方法的有效性。